
D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 1

DEDICAT 6G: Dynamic coverage Extension and
Distributed Intelligence for human Centric Appli-
cations with assured security, privacy and Trust:

from 5G to 6G

Deliverable D3.2
Second release of mechanisms for dynamic

 distribution of intelligence

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 2

Project Details

Call H2020-ICT-52-2020

Type of Action RIA

Project start date 01/01/2021

Duration 36 months

GA No 101016499

Deliverable Details

Deliverable WP: WP3 (Mechanisms for supporting dynamic distri-
bution of intelligence)

Deliverable Task: Task T3.1 (Architectural techniques for supporting
dynamic, optimal placement of intelligence)
and T3.2 (Intelligence placement optimization)

Deliverable Identifier: DEDICAT6G_D3.2

Deliverable Title: Second release of mechanisms for dynamic distribu-
tion of intelligence

Editor(s): Y. Carlinet (Orange)

Author(s): A. Anttonen (VTT), Y. Carlinet (Orange), P. Demes-
tichas (WINGS), R. Eyckermen (IMEC), G. Iecker Ri-
cardo (Orange), M. Forsell (VTT), V. Lamprousi
(WINGS), J. Moreno (ATOS), K. Mößner (TUC), S.
Penjivrag (VLF), N. Perrot (Orange), P. Reiter
(IMEC), H. Resende (IMEC), D. Ribar (Airbus), C.
Silva (IMEC), J. Renart (ATOS), V. Stavroulaki
(WINGS)

Reviewer(s): A. Anttonen (VTT), J. Moreno (ATOS)

Contractual Date of Deliv-
ery:

30/09/2022

Submission Date: 30/09/2022

Dissemination Level: PU

Status: Final

Version: v1.0

File Name: DEDICAT6G_D3.2 Mechanisms for dynamic distri-
bution of Intelligence_v1.0.doc

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 3

Disclaimer

The information and views set out in this deliverable are those of the author(s) and
do not necessarily reflect the official opinion of the European Union. Neither the
European Union institutions and bodies nor any person acting on their behalf may
be held responsible for the use which may be made of the information contained
therein.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 4

Deliverable History

Version Date Modification

V1.0 30/9/2022 Final version, submitted to EC through SyGMa

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 5

Table of Contents
LIST OF ACRONYMS AND ABBREVIATIONS ... 7

LIST OF FIGURES ... 11

LIST OF TABLES ... 13

EXECUTIVE SUMMARY .. 14

1 INTRODUCTION .. 15

1.1 SCOPE ... 16
1.2 DOCUMENT STRUCTURE .. 16

2 ALGORITHMS FOR DISTRIBUTION OF INTELLIGENCE .. 17

2.1 PLACEMENT OF INTELLIGENCE ... 17
2.1.1 Introduction ... 17
2.1.2 Updated Problem Statement/Formulation ... 17
2.1.3 Solution Approach ... 19
2.1.4 Preliminary Results ... 20
2.1.5 Conclusion .. 22

2.2 PLACEMENT OF LATENCY-SENSITIVE TASKS .. 22
2.2.1 Introduction ... 22
2.2.2 System Model and Assumptions ... 23
2.2.3 The Task Distribution Problem .. 24
2.2.4 Approximating the TD Problem .. 28
2.2.5 Experimental Results ... 31
2.2.6 Conclusions ... 34

2.3 LINK OPTIMIZATION IN SMART HIGHWAY ... 34
2.3.1 Introduction ... 34
2.3.2 Problem Formulation .. 35
2.3.3 Simulation .. 36

2.4 INTELLIGENCE PLACEMENT AND MIGRATION IN SMART HIGHWAY .. 38
2.4.1 Introduction ... 38
2.4.2 Problem Setting .. 38
2.4.3 Multi-Objective Optimization .. 39
2.4.4 Approach .. 40
2.4.5 Results .. 41
2.4.6 Future Steps ... 43

2.5 DELAY-AWARE OFFLOADING TASK ASSOCIATION FOR NETWORKED COMPUTING .. 43
2.5.1 Problem ... 44
2.5.2 Applied Solution Frameworks .. 45
2.5.3 Results .. 45
2.5.4 Conclusions ... 48

3 ARCHITECTURAL TECHNIQUES FOR DISTRIBUTION OF INTELLIGENCE ... 49

3.1 INTRODUCTION .. 49
3.2 DISCUSSION ON EDGE PROCESSOR INTEGRATING THE LOW-LEVEL ARCHITECTURAL TECHNIQUES 50
3.3 ORCHESTRATION ENGINE ... 61

3.3.1 Orchestration Engine Design .. 62
3.3.2 Experiment Set-up .. 63
3.3.3 Preliminary Results ... 66
3.3.4 Conclusions ... 71

4 SECURITY AND TRUST ... 73

4.1 ACCESS, AUTHENTICATION, AND AUTHORIZATION MANAGEMENT ... 73

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 6

4.1.1 Authentication .. 74
4.1.2 Authorization ... 75
4.1.3 Access control .. 75
4.1.4 Audit logging and analysis .. 76

4.2 NETWORK AND DATA SECURITY, CRYPTOGRAPHY, AND KEY MANAGEMENT ... 77
5 CONCLUSIONS ... 78

REFERENCES ... 79

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 7

List of Acronyms and Abbreviations

Acronym/Abbreviation Definition

AAA Authentication Authorization Accounting

ACL Access Control List

AGV Automated Guided Vehicle

AI Artificial Intelligence

AMF Access Mobility Function

AP Access Point

API Application Programming Interface

AR Augmented Reality

B5G Beyond 5G

BLE Bluetooth Low Energy

BLEMAT Bluetooth Low Energy Micro-location Asset Tracking

BS Base Station

CFS Customer Facing Service

CISC Complex Instruction Set Computer

CLI Command-Line Interface

CPU Central Processing Unit

C-RAN Cloud Radio Access Network

CU Control Unit

D2D Device-to-Device

DA Distributed Agents

DDoS Distributed Denial of Service

DNS Domain Name Service

DoI Distribution of Intelligence

DoS Denial of Service

DU Distributed Unit

DVFS Dynamic Voltage and Frequency Scaling

E2E End-to-End

EC Edge Computing

EMS (Network) Element Manager System

EN Edge Node

eNB e(volved) NodeB (a.k.a. E-UTRAN NodeB)

ESM Emulated Shared Memory

ETSI European Telecommunications Standards Institute

FC Functional Component

FCAPS Fault/Configuration/Audit/Performance/Security

FE Functional Entity

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 8

FG Functional Group

FL Federated Learning

FLOPS FLoating OPeration per Second

GDPR General Data Protection Regulation

GKE Google Kubernetes Engine

gNB (next)g(eneration)NodeB (replaces 4G eNB)

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPU Graphical Processing Unit

GUI Graphical User Interface

HE Hosting Entity

HMI Human Machine Interface

IDaaS Intelligence Distribution as a Service

IDDM Intelligence Distribution Decision Making

IEEE Institute of Electrical and Electronics Engineers

IMS IP Multimedia Sub-system

IoT Internet of Things

IoV Internet of Vehicle

ISG Industry Specification Group

JSON Java-Script Object Notation

K3S Lightweight Kubernetes

K8S Kubernetes

KPI Key Performance Indicator

LAN Local Area Network

LCM Life Cycle Management

LDM Local Dynamic Map

LOS Line of Sight

LTE Long-Term-Evolution

MAC Medium Access Control

MANO Management Network Orchestration

MAP Mobile Access Point

MC-PTT Mission Critical Push-To-Talk

MCS Mission Critical Service

MCV Manned Connected Car

MCX Mission Critical {PTT, Video, Data Services}

MEC Mobile Edge Computing

MEP Multi-Access Edge Computing Platform

MEPM Multi-Access Edge Computing Platform Manager

MIMD Multiple Instruction Multiple Data

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 9

ML Machine Learning

MME Mobility Management Entity

MOO Multi-Objective Optimization

MORL Multi-Objective Reinforcement Learning

NFV Network Virtualization Function

NFV-I NFV Infrastructure

NFV-O NFV Orchestrator

NG-RAN Next Generation RAN

NLOS Non-Line of Sight

NP Non-Polynomial

NSSF Network Slice Selection Function

OS Operating System

OSM Open Source MANO

PCF Policy Control Function

PDU Protocol Data Unit

PFCP Packet Forwarding Control Packet

PoP Point of Presence

PPDR Public Protection and Disaster Relief

PST Privacy, Security & Trust

QCI QoS Class Identifier

QoE Quality of Experience

QoS Quality of Service

RAM Random Access Memory

RAN Radio Access Network

RAT Radio Access Technology

REST Representation State Transfer

RF Radio Frequency

RISC Reduced Instruction Set Computer

RKE Rancher Kubernetes Engine

RLC Radio Link Control

RPC Remote Procedure Call

RRC Radio Resource Control

RSS RDF Site Summary

RSU Road Side Unit

RTT Round Trip Time

SLA Service Level Agreement

SMF Session Mobility Function

SNR Signal-to-Noise Ratio

SOTA State Of The Art

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 10

SPP Security and Privacy Protection

SSL Secured Socket Layer

TCF Thick Control Flow

ToC Table of Content

TPU Tensor processing unit

TSL Transport Layer Security

UAV Unmanned Aerial Vehicle

UC Use-Case

UE User Equipment (e.g., mobile phone)

UML Unified Modelling Language

UPF User Plane Function

URLLC Ultra-Reliable Low Latency Communication

V2X Vehicle to X

V2V Vehicle to Vehicle

VANET Vehicular Ad-hoc Networks

VEC Virtual Environment Control

VIM Virtual Infrastructure Manager

VM Virtual Machine

VN Vehicular Node

VNF Virtual Network Function

vRAN Virtual Radio Access Network

VRU Vulnerable Road User

WMS Warehouse Management System

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 11

List of Figures
Figure 1. Edge Computing paradigm .. 16

Figure 2. Example input to the algorithm: a) the schema on the left presents the HE’s graph
with their capabilities, b) the schema on the right presents the FE’s graph with their
requirements. .. 20

Figure 3. Output of the example (terminal screenshot and schematical representation): a)
on the left side it is the GLPK MIP model’s (solver) output, b) on the right side it is the proposed
Genetic Algorithm model’s output. ... 21

Figure 4. Score and time execution measurements of MIP and Genetic Algorithm models with
increasing number of FEs. .. 22

Figure 5. Operation Example: UEs place requests for tasks to their neighbouring PoCs, which
are, in turn, forwarded to the DMFC. To each request, the DMFC assigns a provider host, a
priority level, and a low-latency route between provider and PoC through the Edge network.
 .. 24

Figure 6. Experimental network topology consisting of 100 nodes: 70 UEs, 10 Far-edge nodes
(PoCs) and 20 Near-edge hosts. ... 31

Figure 7. Upper bound gaps relative to (i) lower bound, (ii) K-SFA (Betweenness), (iii) K-SFA
(Random), versus the maximum number of flows K. .. 32

Figure 8. Upper bound gaps relative to (i) lower bound, (ii) K-SFA (Betweenness), (iii) K-SFA
(Random), versus the total number of requests |R|. ... 33

Figure 9. RSUs obtain traffic counts from multiple links via V2V ... 35

Figure 10 Pareto front generated from the RSU location model ... 37

Figure 11 The relationship between the measurement error and the penetration rate of the
connected vehicle ... 37

Figure 12. Illustration of a Pareto front, F_1 and F_2 represent arbitrary minimization objectives.
 .. 40

Figure 13. Execution Time ... 42

Figure 14. Average Scalarized Reward .. 43

Figure 15. Target heterogeneous server access model for computation offloading. 44

Figure 16. A snapshot of target heterogeneous network topology ... 45

Figure 17. Comparison of different parts contributing on overall offloading delay coverage
as function of set delay target for power-aware association. .. 47

Figure 18. Comparison of different task association approaches with unlimited AP and CS
capacities as function of target offloading delay. .. 47

Figure 19. Comparison of different task association approaches with limited AP and CS
capacities as function of target offloading delay. .. 48

Figure 20. Architectural techniques for distribution of intelligence. .. 50

Figure 21. High level organization of TPA-E (FE=frontend, BE=backend, M=memory, S=switch).
 .. 52

Figure 22. Execution time of blocked version of the memcopy benchmark (log scale). 54

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 12

Figure 23. Relative performance of a multioperation reduction in TPA-E as a function of the
input data array size. .. 54

Figure 24. Fraction of the bandwidth utilized for shared memory access patterns. 55

Figure 25. Execution time of a barrier synchronization (log scale). .. 56

Figure 26. Parallel matrix addition kernel for Intel CPUs and an TPA-E. 57

Figure 27. Execution time of matched parallel and blocked versions of the memcopy
benchmark (log scale). ... 58

Figure 28. Relative performance of straight-forward parallel versions of the kernels (log scale).
 .. 59

Figure 29. Relative performance of matched parallel versions of the kernels (log scale). 59

Figure 30. Relative performance of blocked versions of the kernels (log scale). 59

Figure 31. Relative active code line count of straight-forward versions of the kernels. 60

Figure 32. Relative active code line count of matched parallel versions of the kernels. 60

Figure 33. Relative active code line count of blocked parallel versions of the kernels. 60

Figure 34. Orchestration engine schema in the DEDICAT6G platform. 62

Figure 35. Orchestration Engine design ... 63

Figure 36. Orchestration Engine Implementation Schema .. 65

Figure 37. Sequence Diagram of the workflow ... 66

Figure 38. Snapshot of the Docker environment with all the containers up and running 67

Figure 39. Terminal snapshot with logs messages of the containers corresponding to: a)
Orchestrator Engine; b) IDDM. .. 68

Figure 40. Snapshot of the SQLite GUI showing the IDDM information stored 68

Figure 41. VNF internal mapping to associated to the NSs in OE cache DB. 69

Figure 42. Examples of some of the generated descriptors of: a) network slice (NST), b)
network service (NSD) and c) VNF (VNFD). ... 69

Figure 43. Snapshot of OSM with the network slice instantiated commanded by the
Orchestrator Engine ... 70

Figure 44. VNF instance in car VIM (OpenStack) indicating the requirements (RAM, VCPU and
Disk). ... 70

Figure 45. Snapshot of the nodes (OpenStack) with the VNFs’ instances up and running 71

Figure 46. Integration of the new service with the existing access control flow 74

Figure 47. Logging data process on edge device ... 76

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 13

List of Tables
Table 1. Intelligence functions placement notations. .. 19

Table 2. Summary of notations .. 25

Table 3. Experimental Parameters .. 32

Table 4. Run time for different solution approaches. ... 33

Table 5. Hyperparameters ... 41

Table 6. Main simulation parameters and values. .. 46

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 14

Executive Summary
The envisioned requirements for 6G include, among others, lower environment impact, im-
perceptible end-to-end latency, high resiliency, security and privacy. They can only be
achieved by combining both computation and communications capabilities of the whole
network: core, edge, access, and even terminals. However, in 5G, it is lacking a unified plat-
form that can leverage infrastructure programmability and AI techniques to meet the most
stringent requirements of services.

The specific goals of WP3 (Mechanisms for supporting dynamic distribution of intelligence)
include (T3.1) architectural techniques for supporting offloading, migration and distribution
of computing and communication on processor, storage, and network levels, (T3.2) algo-
rithms for migration and distribution of intelligence, and (T3.3) validation of the mechanisms
for computation placement optimization also related to the high-level architecture and sce-
narios/use cases defined in WP2 and carried out in WP6, respectively.

This document is the second instalment of a series of three, describing the achievements in
WP3. These achievements follow three dimensions:

Algorithms for Distribution of Intelligence (section 2)
The project has designed and implemented algorithms for the placement of intelligence (i.e.
functional entities) while optimizing a set of given KPIs (including end-to-end latency, overall
energy consumption, throughput, service reliability), in the particular cases of the use-cases
defined in the project.

Experimentations were conducted in order to assess the relevance and performance of the
proposed approaches. The results that were collected are presented in this deliverable. The
results indicate that significant performance improvements can be achieved, as compared
to state-of-the-art techniques.

Low-level Architectural techniques for Distribution of Intelligence (section 3)
We have studied architectural techniques for context switching, patterns of computation
and communication, load balancing, movement of threads, reducing the state of compu-
tation, synchronization, programmability and placement of functionality. Early experimenta-
tions were conducted at the processor and server level.

Security and Trust (section 4)
The DEDICAT 6G security and privacy protection framework is based on a decentralized,
blockchain powered data marketplace. It enables secure, automated monetization, pro-
cessing and exchange of IoT sensors and digital assets data with technical and policy-based
data verification. A description of this framework is given in section 4.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 15

1 Introduction
The 6G network is expected to be deployed in the 2030s. Designing a communication tech-
nology for the 2030s relies on:

1. understanding future service needs on the 2030 horizon and beyond
2. investigating techniques improving performance versus the state of the art
3. combining different techniques to build a mobile communication system that ad-

dresses the identified needs and constraints.

The first two steps generally feed each other: new service requirements stimulate research
while increased performance inspires new services.

The third step will start when there will be a sufficient understanding of the target services and
technical capabilities to set initial design objectives or requirements. Consensus building will
culminate with standardization, which will specify service requirements, architectures, inter-
faces, and protocols that should be addressed globally. Indeed, a common global standard
will be key to enable affordable costs via economies of scale, interoperability and interna-
tional roaming.

Network virtualization and slicing technologies enable service providers to have access to
dedicated ISP’s computational, storage, and communication resources. Cellular networks
will integrate enterprise local networks, which, in turn, has the potential to increase even fur-
ther the number of devices and networks connected to the internet.

In a Cloud Computing (CC) architecture, this explosion of the number of connected devices
results in an overload of ISPs and Content Providers’ resources. Consequently, users’ Quality
of Experience (QoE) may be drastically affected, and more demanding applications and
services may even become invalidated. It has been extensively discussed in the literature
that such an increasing demand may be addressed by shifting from the classic CC paradigm
to the Edge Computing (EC) paradigm.

EC is a computing and data distribution paradigm in which computation and data storage
are placed closer to the service end user. In a general EC model (cf. Figure 1), network nodes
are split into three regions: (i) users (data sources), (ii) edge servers (access points and gate-
ways), and (iii) edge cloud. Any network node of any region can host applications and the
connection between user and application host is determined accordingly. By doing so, you
offload the general resources utilization (bandwidth and response times (also call delay) and
enable a more flexible range of applications. Specifically, because computations can be
carried out at the edge, closer to where data is produced, response times have potential to
be drastically reduced, which is particularly relevant to time-sensitive applications.

EC was introduced in 5G networks, however the control framework in 5G is not mature
enough to support Intelligence Distribution as defined in the Dedicat-6G project, in Delivera-
ble D3.1.

The general objective of WP3 is to support dynamic, optimal placement of intelligence
(data, computation, storage) in heterogeneous B5G/6G networks with respect to Key Perfor-
mance Indicators e.g., service creation time, latency and reliability, overall energy consump-
tion and security.

The main incentive is to enable reliable service continuity with the target user mobility and
given network and computation resources for the DEDICAT 6G use cases and system archi-
tecture defined in WP2.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 16

Techniques for dynamic distribution of data, computation, and storage in B5G/6G networks
are developed, and algorithms for the overall optimization task are formulated to support
extended dynamic coverage (WP4) and services of WP6. Understanding the trade-offs be-
tween computation and communications is essential in the underlying concepts. While the
developed solutions are initially evaluated and tested in this work package, their practical
aspects are integrated in the use case pilots in WP6.

Figure 1. Edge Computing paradigm

1.1 Scope
The scope of this deliverable is to describe the achievements so far on the Mechanisms for
Dynamic Distribution of Intelligence. The work described in this document is still in progress as
the final outcomes of the work will be detailed in the next and last upcoming deliverable.
This document is the second iteration out of the three planned over a period of 18 months.

1.2 Document Structure
The overview of the underlying architecture of the Dedicat-6G system is described in D2.2
[1], with a focus on the Functional Groups used in WP3 in D3.1 [6]. As a consequence, they
are not repeated in this deliverable.

The state-of-art covering Intelligence Distribution Algorithms, technologies and frameworks
for Distribution of Intelligence in Edge Computing, and orchestration of NFV (Network Func-
tion Virtualization) is provided in D3.1 [6].

Section 2 describes the algorithms for Distribution of Intelligence, first in a general case, and
also in the particular instances of the use-cases defined and implemented in the project.

Section 3 details a set of low-level architectural techniques for improving the performance
of Distribution of Intelligence.

Section 4 deals with security and trust issues.

Finally, the conclusion (Section 5) summarizes the achievements and describes the next steps
to be carried out in WP3.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 17

2 Algorithms for Distribution of Intelligence
Algorithms described in this section are designed to be executed in the Intelligence Distribu-
tion Functional Group and serve as a reference for the Context-Aware and Decision-Making
components. These algorithms are key enablers for the objectives of meeting the specific
requirements of verticals while lowering energy consumption.

2.1 Placement of Intelligence
2.1.1 Introduction

Intelligence placement (computation and content) intended for B5G/6G networks needs to
take account of the increasing service requirements as well as the demand of power and
delay sensitivity of user devices. In this section it is proposed an intelligence functions place-
ment algorithm for dynamically distributing the functionalities to the various network nodes
as part of intelligence distribution decision-making FC. This algorithm will support these kinds
of systems by overcoming possible increase of network latency or possible unavailability of
used edge nodes and more. It is provided a Mixed Integer Programming formulation of the
problem and the proposed metaheuristic algorithm building upon the Genetic algorithm
paradigm for solving it.

2.1.2 Updated Problem Statement/Formulation
In this subsection an updated formulation of intelligence functions placement problem de-
scribed in [5] is provided. It is assumed a set of � Functional Entities (FEs) � = {��, …, ��, …, ��}
e.g., tasks, jobs, services with specific CPU requirements, ������, and memory requirements,
������. The possible communications between FEs are represented by a functional graph
(Directed Acyclic Graph-DAG), denoted by �� = (F, K). Each node � corresponds to a FE
and each edge � connects interacting FEs and it is weighted, ��,��, according to the amount
of data transferred between FEs �� and ��� (��,�� = 0 when FEs �� and ��� do not interact or
when � = ��). Additionally, each edge has a maximum acceptable transmission delay, ��,��
(threshold).

Moreover, it is assumed a set of � Hosting Entities (HEs) � = {��, …, ��, …, ��} e.g., edge
nodes, core nodes, robotic units, end user devices, Virtual Machines, containers, with some
capabilities. These are the maximum available CPU resources, ������, memory resources,
������, the battery level �� if applicable and the functionality-wise ��, which is a set that
consists of FEs that the HE �� can support (�� ⊆ �) e.g., a robotic unit can support object
recognition if camera is available, but cannot support grasping an object if robotic arm is
not available. It is also considered a system layout graph �� = (H, L) consisting of the availa-
ble HEs and the communicational channels L among them. The communicational channel
between the HEs ��, ���, has a maximum link capacity ����,��.

The objective is the allocation of FEs to HEs by ensuring efficiency of the system with low
energy consumption and latency. Let ��, denote the set of FEs that will be assigned to HE ��,
�� ⊆ �. We are looking for the minimum cost allocation that satisfies a set of performance
constraints.

For formulating reasons, we indicate the feasibility of assigning a FE to a HE in terms of func-
tionality-wise, with the use of the constants ��,�, where ��,� = 1, if the HE �� can support the FE
�� (�� ⊆ ��), and ��,� = 0, otherwise. We assume that all FEs can be assigned to at least one HE
in terms of functionality-wise (∑ ��,�

�
��� ≥ 1,  ∀  � ∈ {1, … , �}).

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 18

Furthermore, we introduce the set of decision variables ��, where �� = 1, if �� is utilized (there
is at least one FE assigned to it), and �� = 0, otherwise. Also, we introduce the set of decision
variables ��,� to describe the allocation of FEs to HEs. In particular, ��,� = 1, if �� is assigned to
�� and ��,� = 0, otherwise. Finally, we define the set of decision variables ��,��,�,��, to describe
the communication among HE. In particular, ��,��,�,�� = 1, if �� and ��� are communicating
due to communicating FEs �� and ��� assigned to them respectively, and ��,��,�,�� = 0, if ��
and ��� are not communicating as no communicating FEs have been assigned to them.

The problem of obtaining �� may be reduced to the following problem where the following
Objective Function (OF) is minimized:

min
�,�,�

����ℎ�� �� ��

�

���

���   +   ����ℎ�� ⋅ �������
� − �����

� �
�

���

⋅
∑ ������

�
��� ⋅ ��,�

������
+ �����

� �   + ����ℎ��

⋅ �� � � � ���,��,�,�� ⋅
��,��

����,��
�

�

����,����

�

���

�

����,����

�

���

�

Subject to:

∑ ��,�
�
��� = 1 ,  ∀ � = {1, … , �}, each FE can be allocated to only one HE,

∑ [��,� ∗ ������]�
��� ≤ ������ ��� ∑ [��,� ∗ ������]�

��� ≤ ������ ∀ � = {1, … , �}, the maximum
available resources of the HEs are respected.

∑ ��,�
�
���

�
≤ �� , ∀ � = {1, … , �}, all HE that are utilized (�� = 1), have at least one FE assigned on

them.

��,� ≤ ��,� , ∀ � = {1, … , �}, � = {1, … , �}, the feasibility of assigning a FE to a HE (��,� = 1) in terms
of functionality-wise is respected.

��,��,�,�� ∙
��,��

����,��
≤ ��,�� ,  ∀  �, �� ∈ {1, … ,  �},   �, �� ∈ 1, … , �, where � ≠ ��, � ≠ ��, the maximum transmis-

sion delay among two communicating HEs is respected.

��,��,�,�� ≥ ��,� + ���,�� − 1 ,  ∀   �, �� ∈ {1, … ,  �},   �, �� ∈ {1, … , �}, where � ≠ ��,  � ≠ ��,  ��,�� ≠ 0, the com-
municating HEs should have communicating FEs assigned to them.

The first term of the OF denotes the cost related to the battery level (if applicable) of utilized
HEs. This cost takes higher values when battery is low, and it takes close to zero values when
it is fully charged or when the HE is not battery-powered. The second term denotes the power
consumption cost which is modelled as �����

� − �����
� � ⋅ ����� + �����

� based on [2], where
����� is the CPU utilization rate on the HE �� and ����

� , �����
� are the power consumption

when the HE �� is fully loaded and idle, respectively. Finally, the third term denotes cost
(transmission delay) imposed by the communication among HEs related to the amount of
data transferred between FEs ��,�� and maximum capacity link ����,��. Each term is normal-
ized and is weighted depending on the use case. All notations can be found in Table 1.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 19

Table 1. Intelligence functions placement notations.

Notation Definition Notation Definition

�, � Total number of FEs
and HEs respectively

�� = (�, �) System layout graph with nodes HEs
and computational channels �

�,  ��  Indexes of FEs

��,�� Maximum acceptable transmission
delay between FEs �� and ���

�,  ��  Indexes of HEs

����,�� Maximum capacity of the links
among HEs �� and ���

� ={��, …, ��,
…, ��}

Set of FEs ����
� , �����

� Power consumption when HE �� is fully
loaded and idle, respectively

� ={��, …, ��,
…, ��}

Set of HEs. ��,� Binary constant showing if FE �� can
be assigned to HE �� in terms of func-
tionality-wise

������,

������

CPU and memory re-
quirements of FE ��

A={��, …,
��, …, ��}

Collection of sets of FEs that will be as-
signed to the HEs

������,
������

Maximum available
CPU and memory re-
sources of HE ��

�� Decision variable that takes 1(0) de-
pending on whether HE �� is (is not)
utilized

�� Battery level of HE �� ��,� Decision variable that takes 1(0) de-
pending on whether FE �� is (is not) as-
signed to HE ��

�� = (�, �) Functional graph with
nodes FEs and edges
�

��,��,�,�� Decision variable that takes 1(0) de-
pending on whether HE �� and ��� are
(are not) communicating

��,�� Weights of interacting
FEs �� and ��� (data
transferred)

2.1.3 Solution Approach
The above problem was initially solved with the use of a Mixed Integer Programming (MIP)
python solver called GNU Linear Programming Kit (GLPK) provided by the open-source PuLP
[7]. MIP solvers are known to provide the optimal solution but are computationally intracta-
ble, especially for large scale experimentation. For this reason, a metaheuristic Genetic al-
gorithm is developed to approximate this solution. There are many studies proposing genetic
algorithms for service and virtual machine placement problems providing good results
[2][3][4].

In general, when using genetic algorithms to address an optimization problem, it is consid-
ered a population of individuals, known as “chromosomes”, to encode a solution of a prob-
lem each. The chromosome, in turn, is a series of predetermined number of “genes”, and
each “gene” stands for a parameter that defines the solution for that individual. In our case,
each “chromosome” is a series of HEs where each one represents the “proposed” HE for
each FE and the length of each “chromosome” equals to the number of FEs. The algorithm
firstly generates randomly a population of “chromosomes” and then it is applied a fitness

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 20

function, which is the objective function, OF, of the optimization problem, to each chromo-
some. Each chromosome has a fitness score calculated from the OF. Over the course of a
defined number of generations (in our case we use an upper limit of generations having the
same best fitness score), a population of chromosomes evolves, and some operators (parent
selection, crossover, mutation) are used to improve the population’s overall fitness.

Parent selection operator is the process of selecting chromosomes in one generation to pass
them to the next generation, these chromosomes are known as “parents”. In our case we
used tournament selection where each “parent” is the fittest out of a predetermined number
of randomly chosen chromosomes of the population. Crossover operator is used for creating
two “children” candidate solutions (new solutions) from two “parents”. In our case we select
a random split point on the chromosome of each “parent”, then we create a “child” with
the genes up to the split point from the first “parent” and from the split point to the end of
the chromosome from the second “parent”. This process is then inverted for the second
“child”. Finally, mutation is a change in a single gene of “child’s” chromosome or in a group
of genes for exploring new areas of the solution space. In our case we use reverse sequence
mutation proposed in [5]. We randomly choose two positions in chromosome, and we re-
verse the gene order in the sequence between these positions. Crossover and mutation op-
erators occur with a predefined probability. In our case we used 0.8 crossover and 0.15 mu-
tation rate. Additional steps were introduced related to efficient initialization of chromo-
somes among others and more elaboration will follow.

2.1.4 Preliminary Results
In this subsection some initial results of the described model are presented. Figure 2 depicts
a case of thirteen HEs of which nine are robotic nodes having camera or arm on them, with
battery level of range 20% - 90%, and the rest are not battery-powered nodes.

Figure 2. Example input to the algorithm: a) the schema on the left presents the HE’s graph with their

capabilities, b) the schema on the right presents the FE’s graph with their requirements.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 21

The levels of available CPUs are {2000, 2600, 3000} MIPS, the levels of available memory are
{2048, 4096, 8192} MB, the levels of power consumption when fully loaded are {260, 360, 460}
W and the levels of power consumption when idle are {70, 100, 170} W. The links between HEs
have maximum capacity 10 or 20 Mbps. Figure 2b shows the nine FEs with their requirements.
FE1 and FE5 can be placed in a robotic unit with an arm, FE2 and FE8 can be placed in a
robotic unit with a camera and the rest can be placed anywhere fulfilling the CPU and
memory requirements of levels {500,750,1500} MIPS and {256,512,2048} MB, respectively, con-
sidering the amount of data transferred 2-10 Mb and the maximum acceptable delay 0.2-
1.4 s between two interacting FEs. In this example/experiment, we used a population of 40
chromosomes with maximum iterations having the same score (stopping criteria) being 400
for genetic algorithm. Subsequently, Figure 2 shows the output placement proposed by GLPK
solver and Genetic Algorithm model. As it is shown Genetic Algorithm has a score (0.316781)
close to the optimum (0.272781) with one extra HE utilized and similar category of nodes used
in general.

Figure 3. Output of the example (terminal screenshot and schematical representation): a) on the left

side it is the GLPK MIP model’s (solver) output, b) on the right side it is the proposed Genetic Algo-
rithm model’s output.

Furthermore, Figure 3 shows some initial performance testing of Genetic algorithm compared
to GLPK solver. For these plots we assume a fixed HE-schema, like the one shown in Figure 2a
with the difference that the first category of HE (robotic units) consists of 36 HEs, the second
category, consist of 6 HEs and the third category consists of one HE (43 HEs in total). We
measured the scores and the execution time when increasing the FEs. The population of
genetic algorithm is 60 for 2-16 FEs and 100 for 16-48 FEs and iteration threshold is set to 50 for
2 FEs, 100 for 4-20 FEs, 150 for 24-28 FEs and 200 for 32-48 FEs. As it is mentioned MIP solvers are
computationally intractable in large experimentation, so we added an execution time limit
of 200 s to MIP solver. As a result, the MIP scores appeared in Figure 4, exceeding 10 FEs, are
not optimum since there was no time for all calculations to be completed. Additionally, we
can see that there are not any MIP values for more than 36 FEs because within 200 s, GLPK
solver could not find a feasible solution. As we can see from those graphs, Genetic algorithm
has close to optimum scores within significantly less time than MIP model. Additionally, we
can see that for a small amount of FEs (in this example less than 8 FEs), MIP solver is marginally
faster than proposed Genetic algorithm, obtaining better scores. Hence, it may be prefera-
ble to use MIP model for small-scale problems and use the proposed Genetic algorithm
model for large-scale problems.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 22

Figure 4. Score and time execution measurements of MIP and Genetic Algorithm models with in-

creasing number of FEs.

2.1.5 Conclusion
In this subsection, the intelligence functions placement problem for distributing the intelli-
gence/functionality to the various network nodes (edge, core nodes, robotic units etc.) is
studied, taking into consideration among others the transmission delay and power consump-
tion. It is provided the description and the formulation of the problem along with the descrip-
tion of the MIP and genetic algorithm implemented for approaching this problem. Addition-
ally, preliminary results are provided. In future work, there will follow more evaluations and
improvements of the proposed algorithm related to stopping criteria, population size, muta-
tion probability, crossover probability and more.

2.2 Placement of Latency-Sensitive Tasks
In this Section, we consider the problem of finding the placement of the tasks, along with the
needed routing between tasks and end-users, in the context of the Smart Warehouse Use-
Case (UC 1).

2.2.1 Introduction
The performance of Edge Computing based systems depends on how efficiently the network
resources are managed. In the Intelligence Distribution (ID) Problem, given a system (and its
underlying network) with a fixed number of services to be consumed, we wish to (i) assign
services to network nodes (service placement) and (ii) determine user-host communication
path (service routing) in order to provide expected QoS to users at a minimum operation
cost. In this section, we are interested in the ID problem for systems in which services are delay
sensitive. Thus, in addition to finding an efficient service placement and routing, we want to
ensure that services experience a tolerable end-to-end (E2E) delay.

In the context of Industry 4.0, Smart Warehouse applications bring together all the aforemen-
tioned challenges in an effort to promote digitization and automation of industrial processes.
They have been considered a key use case in most next generation architectures envisioned
designs, including the DEDICAT 6G project. In this work, we are particularly interested in real-
time human-machine interaction services with strict latency requirements, e.g., automati-
cally guided vehicles, timely computer-aided industrial operations (e.g., assisted with virtual
and augmented reality technologies), etc. A MEC-powered network design is a key enabler
of such services through back-end computation offload and opportunistic networking.

In this section, we approach the ID Problem by finding its optimal exact solution through a
Branch-and-Cut algorithm. The separation problem is built with valid inequalities based on

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 23

cover cuts (for capacity constraints). Additionally, we propose a greedy algorithm to effi-
ciently approximate the problem with theoretical performance lower bounds.

2.2.2 System Model and Assumptions
Consider a MEC architecture, illustrated in Figure 1. The Devices layer comprises a set U of user
equipment (UEs), each of which is associated with a single cellular Base Station (BS). Each BS
is equipped with a MEC host for application-oriented data storage, processing, and routing,
which we, henceforth, refer to as Points of Connection (PoCs) or “far-edge” hosts. For sim-
plicity, we assume that PoCs are able to perfectly handle all transmissions from and to their
associated UEs, so that UE-BS communication will be transparent to our model. In the
transport network, BSs’ traffic often converges at sink nodes/gateways powered with more
abundant computational resources, which we refer to as “near-edge” MEC hosts. The Edge
layer is composed of interconnected (e.g., through Mp3 interfaces) far- and near-edge MEC
hosts, which we also refer to as the Edge network. We represent the set comprising all MEC
hosts by H.

In our model, we do not make any distinction between applications and services and refer
to them simply as tasks. The set of all considered tasks is denoted by T. We assume that each
MEC host has all tasks implemented a priori. We define this model in the context of the Deci-
sion-Making Functional Component (DMFC), as a centralized intelligence, with access to the
information related to the entire network’s infrastructure and available resources. The system
operates periodically such that each period is split into two phases: observation and man-
agement. In the observation phase, UEs exchange their requested tasks’ data and poten-
tially place requests for more tasks, which will be served only in the observation phase of the
next operation period. For the entire observation phase, UE-BS association remains static, and
resources are dedicated to their assigned requests. In the management phase, the DMFC
knows the set of all placed requests R ⊆ U ×T and decides how to manage the network’s
available resources in order to accommodate all requests.

In the management phase, depending on the availability of network and computational
resources, any MEC host may be assigned by the DMFC to handle a request and to provide
the related task’s data to its UE, becoming the request’s provider. If the closest host to the UE,
i.e., its associated PoC, is not available, then another MEC host may become the provider.
In this case, the DMFC must also provide a route, i.e., a sequence of links, connecting the
request’s provider and its UE. Additionally, the DMFC may also assign different priority levels,
from a pre-determined set P, in order to force a higher transmission rate in exchange of more
computational resources utilization. The resources and performance metrics related to the
described operation are summarized as follows:
• When a request r ∈ R is assigned to a host h ∈ H at a priority p ∈ P, it consumes a fraction

 of host h’s total available computational resources, Ch.
• The throughput , i.e., the average achieved data transmission rate, to serve request r’s

data at priority p must be ensured by the provider host and each other host participating
in the request’s routing.

In the design of MEC systems that are able to meet strict latency requirements, we have to
consider the trade-off between throughput and network latency. We assume error-free
channels in the network, so the (average) throughput equals the data rate. Achieving higher
throughput may provide UEs with smoother, uninterrupted experience, so we use it as a
measure of Quality of Service (QoS). Moreover, we consider the network latency as the end-
to-end delay, i.e., the time to transmit application packets from the UE to the host providing
the requested task (or vice-versa). We assume that the end-to-end delay consists uniquely of
queuing delay, which is fundamentally impacted by the total throughput. If, on one hand,

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 24

we want to provide better QoS, on the other hand, it increases the network latency (queuing
delay), becoming the bottleneck for timely applications.

In summary, the DMFC, aware of the request set R, must determine a network setup. We focus
this Section on techniques to find such a network setup, which consists of:
(i) Priority assignment: Each request r ∈ R will be assigned a priority p ∈ P. Higher priorities are

associated to higher throughput and higher computation. We assume that the lowest
priority is related to the minimum throughput to provide a task correctly.

(ii) Request allocation: Each request r ∈ R will be provided by an edge host h ∈ H. Hosts may
have different amounts of available resources, e.g., near-edge hosts usually enjoy more
computation power than far-edge hosts.

(iii) Request routing: For each request r ∈ R, if it is provided by a host other than its UE’s PoC,
then the DMFC must find a route through which task-related data will flow between UE
and the actual provider.

We illustrate the operation of the considered system in Figure 5. In this scheme, a set of re-
quests R = {A,B,...,G} is placed by the UEs of PoCs 1 and 2. The DMFC collects the requests and
try to assign them to the MEC hosts in order to provide UEs with the highest throughput possi-
ble. Consider that Far-Edge hosts can only provide tasks at the lowest priority. Then, the DMFC
will try to distribute the tasks among the Near-Edge hosts, i.e., hosts 3, 4, and 5. In this example,
due to computational limitations, Near-Edge hosts can only provide up to 2 tasks at interme-
diate priority and 1 task at high priority. Similarly, latency requirements are only satisfied if arcs
carry data traffic of up to 2 tasks at intermediate priority and 1 task at high priority. A possible
assignment is shown in the figure, where tasks are placed on each MEC host and each colour
is associated to a different priority level. The coloured arrows indicate the tasks’ data route,
flowing from its provider to the PoC.

Figure 5. Operation Example: UEs place requests for tasks to their neighbouring PoCs, which are, in

turn, forwarded to the DMFC. To each request, the DMFC assigns a provider host, a priority level, and
a low-latency route between provider and PoC through the Edge network.

2.2.3 The Task Distribution Problem
Considering the system model and assumptions discussed previously, we introduce next the
Task Distribution (TD) Problem and model it as an Integer Programming (IP) optimization prob-
lem.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 25

Table 2. Summary of notations

First, we represent the Edge network as a graph G = (H,A), where the hosts compose the set of
vertices and we consider a set of arcs A. If there is a communication link between two net-
work hosts, we consider one arc in A in each direction. Note that arcs in G do not indicate
transmission direction, they rather assist in the route creation process. Then, the route for serv-
ing request r = (u,t) ∈ R may be represented as a path on graph G from the UE to its provider
host. Since we assumed that UE-BS is transparent to our model, it suffices to build a route from
the UE’s PoC to the request’s provider. Therefore, from now on, we use index u to indicate
the UE’s PoC, i.e., u ∈ H is a (far-edge) MEC host.

In what follows, we introduce the elements of our optimization formulation.

1) Decision Variables: To each problem component described at the end of Section II, we asso-
ciate a binary variable:
(i) We model the priority assignment with variable

 �  ∈  �ℛ � � (1)

indicating whether priority p ∈ P is assigned to request) or not (i.e.,

(ii) We model the request allocation with variable

�  ∈  �ℛ � ℋ (2)

indicating whether request r ∈ R is provided by node h ∈ H (i.e., yhr = 1) or not (i.e., yhr = 0).

(iii) We model the request routing with variable

�  ∈  �ℛ � � (3)

indicating whether request r ∈ R data is forwarded through arc a ∈ A (i.e.,) or not (i.e.,

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 26

Structural Constraints: First, to every request r ∈ R, we must assign exactly one priority in P, i.e.,

∑ ��
� 

� ∈ �   =  1,  ∀�  ∈ ℛ (4)

Similarly, every request r ∈ R should be provided by one single node, i.e.,

∑ ��
� 

� ∈ ℋ   =  1,  ∀�  ∈ ℛ (5)

Now, we define the constraints that will enforce the creation of flows (or paths) over the
underlying graph G = (H,A) through which every request r ∈ R will be routed. This can be
achieved by imposing the following set of flow conservation constraints

∑ ����, ���
�   −  ����, ��

� � 
�� ∈ �  (� ) =   ����(�)  −  ��

�,  ∀�  ∈ ℛ,  ∀ℎ  ∈ ℋ (6)

where u(r) is the PoC of the UE which placed request r and we define δ(h) ⊆ H as the set of
neighbors of host h, i.e., host h’s communicating hosts, and 1e indicate whether event e occurs
(i.e., 1e = 1) or not (i.e., 1e = 0).

Computational Capacity Constraints: In what follows, we need to guarantee that a target setup
can be implemented considering the available computational resources. We ensure that
the computational utilization of each host meets its RAM/CPU capacity with

∑ ∑ ��
� 

� ∈ �
 
� ∈ ℛ   ��

� ��
�  ≤   �� ,  ∀ℎ  ∈ ℋ (7)

Where is the computational demand to provide the task associated to request r at
priority p and Ch ∈ R+ is the total computational resources available at node h.

Latency Requirements Constraints: We model the latency requirements by imposing the following
constraints

∑ ����∑ ∑ ��
�� 

� ∈ �
 
�� ∈ ℛ   ��

�� ��
�� �  +  ��� 

� ∈ �  ��
�  ≤   �� ,  ∀�  ∈ ℛ (8)

Where is the achieved throughput for request r at priority p and request r has toler-
ance Lr ∈ R+. We define the arc’s traffic load as the total throughput achieved by all requests
being routed through a. We approximate the network latency (i.e., the queuing delay) of a
request r by a linear function of the traffic load on the links routing it, such that αa and βa are
the line coefficients for arc a.1 In summary, latency is impacted by two factors:
1) The number of links forwarding the request’s data.
2) The total traffic load at those links, i.e., total throughput of all requests traversing each

link.

Objective Function: Our goal is to maximize the QoS, which is simply the total throughput
achieved in a given setup to serve all considered requests, i.e.,

1 The system is stable if the total throughput over every link is bounded by the link’s capacity [26]. We assume that all links have enough capacity to

accommodate the maximum priority throughput.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 27

 QOS(�)  ≜   ∑ ∑ ��
� 

� ∈�
 
� ∈ℛ  ��

� (9)

Definition 1. The Task Distribution (TD) Problem aims at finding a valid network setup, i.e., an
assignment of x,y,z that satisfies constraints (1)-(8), that maximizes the objective function (9).
In other words, the TD Problem is to solve the following optimization problem:

Problem 1 (Task Distribution (TD) Problem).

Proposition 1. Problem 1 is NP-Hard.

Proof. Consider the following special instance of Problem 1: Each request has sufficiently
large latency tolerance so that all requests may share its route’s arcs at the highest achiev-
able throughput, i.e.,

�� ≥ � ��

 

� ∈�

 |ℛ| ����  +  �� ,  ∀�  ∈ ℛ

Where . Notice that latency constraints can be relaxed and the
DMFC is free to choose whatever route it judges to be convenient for each request. The
DMFC still needs to assign each request to a host satisfying their computational capacity.
Therefore, in this setup, the TD Problem can be translated to the classic Multiple Knapsack
(MK) Problem, which is proven to be NP-Hard [28]. By reducing the MK Problem to this in-
stance of the TD Problem, we show that, even in such a simple case, the TD Problem is NP-
Hard. Therefore, the TD Problem is NP-Hard, so general instances cannot be solved in polyno-
mial time, unless P = NP.

Even though Problem 1 is NP-Hard, it can be linearized in order to be addressed via traditional
IP solving techniques. This can be achieved by introducing auxiliary variables capturing the
product of Problem 1’s main variables.

Computational Capacity Constraints: We consider a first set of auxiliary variables

�  ∈ �ℛ � ℋ � � (10)

such that computational capacity constraints (7) are written as

∑ ∑ ��
� 

� ∈�
 
� ∈ℛ  ��, �

�   ≤ �� ,  ∀ℎ  ∈ ℋ (11)

where . We ensure that auxiliary variables u are coherently as-
sociated to the main variables x,y by enforcing the following set of constraints

��, �
�   ≤  ��

�  ,  ∀�  ∈ ℛ,  ∀ℎ  ∈  ℋ,  ∀�  ∈  �

��, �
�   ≤  ��

�  ,  ∀�  ∈ ℛ,  ∀ℎ  ∈  ℋ,  ∀�  ∈  �

��, �
�   ≥  ��

�  +  ��
�  − 1  ,  ∀�  ∈ ℛ,  ∀ℎ  ∈  ℋ,  ∀�  ∈  � (12)

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 28

Latency Requirements Constraints: We consider a second set of auxiliary variables

�  ∈  �ℛ � ℛ � � � � (13)

such that latency requirement constraints are written as

 ,∑ ��
 
� ∈�   �∑ ∑ ��

�� 
� ∈�

 
�� ∈ℛ  ��, �

�, ��
�   +  �� ��

�  ≤ ��  ,  ∀�  ∈  ℛ (14)

where . We ensure that auxiliary variables v are coher-
ently associated to the main variables x,z by enforcing the following set of

constraints

��, �
�, ��

  ≤  ��
��  ,  ∀�,  ��  ∈  ℛ,  ∀�  ∈  �,  ∀�  ∈  �

��, �
�, ��

  ≤  ��
��  ,  ∀�,  ��  ∈  ℛ,  ∀�  ∈  �,  ∀�  ∈  �

��, �
�, ��

  ≤  ��
�  ,  ∀�,  ��  ∈  ℛ,  ∀�  ∈  �,  ∀�  ∈  �

��, �
�, ��

  ≥  ��
�� +  ��

��  + ��
�  − 2 ,  ∀�,  ��  ∈  ℛ,  ∀�  ∈  �,  ∀�  ∈  � (15)

The final formulation resulting from the linearization of Problem 1 is provided in Problem 2.

Problem 2 (Linear TD (LinTD) Problem). (LinTD)

Remark 1. We note that we can provide an upper bound to Problem 1 if we solve the contin-
uous relaxation of its linear version, i.e., relaxing the integrality of variables x,y,z. Then, Problem
1 can be translated to a Linear Programming (LP) problem, which can be efficiently solved
in practice. Nevertheless, it is important to emphasize that Problem 2’s size grows quickly, as
each new auxiliary variable introduces at least three new constraints.

2.2.4 Approximating the TD Problem
In this section, we discuss an approximation of Problem 1 based on Decomposition. In the De-
composition technique, we tackle the original problem using a two-stage approach. In the
first stage, we solve an auxiliary problem which is simpler and captures only part of the original
problem’s constraints. The solution of the auxiliary problem is somehow used as an input to
the master problem at the second stage. With the relaxed constraints related to the auxiliary
problem, the master problem will find the best solution that suits its input.

In order to discuss how we can apply the decomposition technique to solve Problem 1, we
need to introduce some additional notation. First, we define a flow fs,d = {(s,h),...,(h′,d)} simply as
a path on G, i.e., a sequence of arcs from a source node s ∈ H to a destination node d ∈ H.
Since multiple flows may exist connecting a pair of nodes s,d on G, we denote by Fs,d > 0 the
total number of (s,d) flows. We denote the set of all flows in a graph G as

ℱ  ≜  ���, �(�) :  �  =  1,   … ,  ��, �,  ∀�,  �  ∈  ℋ � (16)

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 29

where k is a unique index for each (s,d) flow. If s = d, then we consider that Fs,d = 1 and fs,d(1) =

∅.

 The Flow Formulation – Master Problem
Given that the set of flows F was obtained in advance, we propose to reformulate Problem
1 in terms of flows. Roughly speaking, the DMFC’s resource management can be reduced to
assigning flows to requests. Then, we integrate all problem’s components into the following
decision variables

�  ∈  �ℛ � ℱ � � (17)

indicating whether request r’s data is routed using flow f ∈ F at priority) or not (i.e.,
). Note that, when selecting a flow for a request, we are implicitly selecting (i) the pro-

vider host and (ii) the sequence of arcs in G through which request’s data is sent.

We enforce that a single flow, whose source node is the request’s PoC, is assigned to each
request at exactly one priority by imposing constraints

∑ ∑ ��(�)��(�)
 
� ∈ �

 
� ∈ ℱ  ��, �

�   =  1  ,  ∀�  ∈  ℛ (18)

where s(f) denotes the source node of flow f. The computational capacity constraints can
be translated to

∑ ∑ ��(�)��
 
� ∈ �

 
� ∈ ℛ  ��

� ��, �
�   ≤  ��  ,  ∀ℎ  ∈  ℋ (19)

where d(f) denotes the destination node of flow f.

Similarly, the latency requirements constraints are redefined as follows

∑ ∑ ��, �
� 

� ∈ �
 
� ∈ ℱ   ∑ ���  �∑ ∑ ∑ �� ∈ ��

  
�� ∈ �

 
�� ∈ ℱ

 
�� ∈ ℛ  ���

��
 ���, ��

��
�   +  �� � 

� ∈ � ≤  ��∀�  ∈  ℛ (20)

Finally, the objective function is

QOSℱ(�)  ≜   ∑ ∑ ∑ ��
� 

� ∈ �
 
� ∈ ℱ

 
� ∈ ℛ  ��, �

� (21)

We formulate the TD Problem in terms of flows as follows:

Problem 3 (Flow-Based TD (FTD) Problem).

Proposition 2. If F contains all possible flows on graph G, then problems 1 and 3 are equiva-
lent, i.e., if (x∗,y∗,z∗) and λ∗ are their respective optimal solutions, then

���(� ∗) = ���ℱ(� ∗)

The intuition behind Proposition 2 is that every flow in F satisfies the flow conservation con-
straints (6). Therefore, by building a solution for Problem 3 we are implicitly finding a valid
assignment for variables z from the original formulation.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 30

Proposition 3. Problem 3 is NP-Hard.

The proof of Proposition 3 follows the same lines as the proof for Proposition 1. We consider a
setup for Problem 3 with sufficiently large latency requirements and note that the MK Problem
can be reduced to such a particular instance. Therefore, Problem 3 is NP-Hard.

Remark 2. Even though Problem 3 can be linearized (similarly to what was done for Problem
1), the size of set F grows rapidly with the size of the network G, which may easily lead to a
computationally intractable problem size. However, we remark that the structure of Problem
3 suits the Column Generation framework, which may be able to find good approximations
in practice.

We discuss next how to further exploit the flow formulation to approximate the TD Problem.

 Shortest-Flow Approximation
The main idea of the Shortest-Flow Approximation (SFA) is to consider that the optimal solution
of the TD Problem is primarily built upon shortest flows. This is reasonable because the number
of links routing a task’s data is the first factor that impacts the latency (recall the discussion
on Latency Constraints in Section III).

For a given network G, we define the set of shortest flows from source node s to destination
node d as follows

�ℱ�, �  ≜  ���, �  ∈  ℱ :  ∀��, �
�   ∈  ℱ,  ���, ��  ≤  ���, �

� �� (22)

where |f| is the size of set f, i.e., the number of arcs in flow f. Additionally, we consider that the
set of shortest flows can be limited to a maximum number K ≥ 1 of equivalent flows between
every pair of source-destination nodes. We define the set of K-shortest flows between nodes
s,d as SFKs,d. Notice that, because a pair of source-destination nodes may have a number of
shortest flows smaller than K, then |SFKs,d| = min(K,|SFs,d|). Finally, we denote the set of the K-
shortest flows for all pairs of nodes in G as

�ℱ�  ≜  ��ℱ�, �
�  :  ∀(�,  �)  ∈  ℋ �

In SFA, we build and solve Problem 3 using the set SFK of K-shortest flows instead of the entire
set of flows F.

Remark 3. There are two immediate consequences of applying SFA: (i) Set SFK can be effi-
ciently obtained, e.g., via Dijkstra algorithm [30] and (ii) we consider a significantly smaller
problem. However, by limiting set F, we provide the solver with less flows to integrate solution
candidates, which often results in sub-optimal solutions. In summary, if λ∗ and λ∗SFA are the op-
timal solutions of Problem 3 considering the entire set of flows F and considering set SFK of the
K-shortest flows, respectively, then,

QOSF(λ∗) ≥ QOS .

Henceforth, we refer to SFA limited by the K-shortest flows as K-SFA. The K-SFA’s ability to
achieve solutions close to the optimal (considering all flows) depends primarily on two fac-
tors, which we discuss next.

1) Selecting K: The larger is K, the better may be the approximation. For large enough val-
ues of K, the closer set SFK gets to SF, which provides the maximum number of shortest-flow
candidates and, in turn, the best approximate solution. However, it is still not guaranteed that
the real optimal solution can be achieved, given that optimal flows are not necessarily the

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 31

shortest ones (i.e., optimal flows may reside within F \ SF). Moreover, the optimization prob-
lem’s size grows rapidly with K. Therefore, we must find the sweet spot in this trade-off for K, in
order to obtain satisfactory approximations from computationally treatable optimization
problems.

2) Selecting the K-shortest flows: In the case where |SFs,d| > K, the strategy used to choose the
K shortest flows among this subset to constitute set SFK may also impact the quality of K-SFA’s
solution. If, in a given set SFK, flows tend to overshare the same arc, then sub-optimal assign-
ments will integrate the solution in order not to violate the latency requirement constraints.

3) The idea is that we must choose the K-shortest flows that provide the largest number
of feasible assignment candidates possible, in order to reduce the optimality gap (i.e. the
relative distance to the optimal). Inspired by [31], we capture the notion of potential traffic
load of a given arc by using its edge-betweenness centrality. In short, the edge-betweenness
of a link a is the fraction of shortest flows traversing it. We propose to rank flow f’s “idleness”
level according to the following metric
 �(�)  ≜    ∑ �1  −   �

|�ℱ|
  ∑ �� ∈�� 

� ∈�ℱ � 
� ∈� (23)

As the total traffic load traversing each arc is the second factor impacting latency, choosing
the K-shortest most-idle flows provides a space of solution candidates with higher degree of
freedom, potentially reducing the optimality gap.

Figure 6. Experimental network topology consisting of 100 nodes: 70 UEs, 10 Far-edge nodes (PoCs)

and 20 Near-edge hosts.

2.2.5 Experimental Results
In this section, we study the performance of K-SFA for specific values of K and how the selec-
tion strategy based on edge-betweenness may affect the quality of the approximation. In
our experiments, we consider the Berlin topology: a cellular network consisting of 10 PoCs
located according to the positions of T-Mobile BSs in Berlin extracted from [33]. Moreover, we
consider that the PoCs communicate to a randomly generated (connected) network of 20
near-edge hosts. There is a set of 70 UEs, each of which randomly connected to a PoC. We
plot in Figure 3 the network topology used in our experiments.

We consider that values of computational utilization and throughput only depends on the
priority, i.e.,

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 32

R,∀p ∈ P and . There are 3 priorities, such that, ∀r ∈ R, computational
demands are GB, GB, and GB, and the throughput levels are

 Mbps, Tdr = 20.0 Mbps, and Mbps. Far- and Near-edge hosts have Ch =32.0 GB
and Ch = 64.0 GB of RAM, respectively. Requests’ UEs are chosen uniformly at random, and
their related latency is also uniformly selected from the interval [50.0,150.0] ms. All these values
are consistent with the literature (e.g., [15]). For each arc in the network, the latency model
parameters are randomly chosen from a fixed interval. Specifically, ∀a ∈ A,

Figure 7. Upper bound gaps relative to (i) lower bound, (ii) K-SFA (Betweenness), (iii) K-SFA (Ran-

dom), versus the maximum number of flows K.

Table 3. Experimental Parameters

Computational Capacity Far-Edge Hosts Near-Edge Hosts
Ch = 32.0 GB Ch = 64.0 GB

Latency Tolerance Lr ∼ UNIFORM[50.0,150.0] ms
Priorities Attributes p = 1 p = 2 p = 3

Tp = 10.0 Mbps Tp = 20.0
Mbps

Tp = 30.0
Mbps

Dp = 1.0 GB Dp = 2.0
GB

Dp = 4.0
GB

Arcs’ Latency Parameters αa ∼ UNI-
FORM[0.0,5.0]

βa ∼ UNI-
FORM[0.0,200.0]

αa is chosen from interval [0.0,5.0] and βa is selected within [0.0,200.0]. We summarize the pa-
rameters in Table 2.

Given the described experimental setup, we generate the request set such that PoCs can
provide all their UEs’ requests at the lowest priority possible. This guarantees that the optimi-
zation problem always has a feasible solution, which we refer to as the trivial solution. We
propose to compare the approximation of K-SFA with different values of K and with diverse
selection strategies. We also define the lower bound (LB) as the trivial solution where all re-
quests are deployed at the UEs’ PoCs at the lowest priority. We compare K-SFA and LB with
Problem 2’s upper bound (UB), i.e., the solution of its continuous relaxation.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 33

Figure 8. Upper bound gaps relative to (i) lower bound, (ii) K-SFA (Betweenness), (iii) K-SFA (Ran-

dom), versus the total number of requests |R|.

In our first set of experiments, we propose to observe the impact of K and the different shortest
flows selection strategies for a set of 150 requests. For each K ∈ {1,...,10}, we solve2an instance
of Problem 3 with a set of K-shortest flows filtered (i) uniformly at random, , and (ii) using
betweenness strategy, SFKB . For each K, we generate 30 problem instances with randomly cho-
sen FK,R and average their relative UB gaps. Finally, we calculate the relative UB gap for the
betweenness strategy. We show the first experimental results in Figure 8.

Table 4. Run time for different solution approaches.

 Origi-
nal
For-

mula-
tion

 K-Shortest Flow Approximation

K=2 K=4 K=6 K=8 K=10

Auxiliary
Problem
Time

-
912 1122 1507 2355 2880

Main/Mas-
ter
Problem
Time

-

18352 38355 67355 80561 110803

Total
Solution
Time

7458
19264 39477 68862 82916 113683

We first note that the performance gap between random and betweenness (of around 27%)
has its largest value when K = 1. At this point, both approximations have large UB gaps and
as K increases, (i) K-SFA tends to provide better results (i.e., closer to the UB), in general, until
it reaches a convergence point at K = 8, and (ii) the performance gap between random and
betweenness decreases. Notice that KSFA (regardless of the selection strategy) may achieve
results up to 10% far from the problem’s UB for when K = 10. At this point, the selection strategy
has little impact because, for K = 10 in this network, we are considering almost all shortest
flows. This hypothesis is also supported by the fact that the standard deviation for the random

2 The optimization model was developed with PyOMO and solved using IBM CPLEX solver.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 34

selection is close to zero for K > 5. These facts altogether corroborate our conclusion that the
approximation provided by K-SFA is at most 10% from the optimal solution in this setup. This
means that the optimal solution is composed of some non-shortest flows.

We show on Table 4 the completion time, in seconds, for different stages of our solutions. In
general, the auxiliary problem’s solution time is considerably smaller than the master prob-
lem’s solution time. As we briefly mentioned in Section IV, the shortest paths can be efficiently
obtained. The largest overhead is due to betweenness calculation time, which is still a negli-
gible increase in comparison with the master problem solution time. Experiments were run on
a computer with an Intel(R) Xeon(R) CPU E5-2650 v2 running at 2.60 GHz using 256 GB of RAM
and Linux Debian 6.3.0 operating system.

In our second set of experiments, we fix K = 2 for K-SFA and solve the problem for requests sets
of different sizes. Once again, we plot K-SFA’s (both Betweenness and Random) and LB’s gap
relative to the problem’s UB. We observe that, for |R| = 10, the network can accommodate
almost all the request at the highest priority and K-SFA was capable of approximating this
solution. As we increase the number of requests, the larger is the gap with the UB. This trend
can be explained by the fact that having to handle more requests require more complex
solutions not only based on shortest paths. In other words, having less busy shortest flows im-
proves the result (Betweenness is still performing better than Random), but it gets a less signif-
icant advantage, given that non-shortest flows are more present in the solution as the prob-
lem grows in complexity (with more requests to handle). Interestingly, after reaching its peak
at |R| = 160, the curves tend to decrease and to get close to each other. We assign this trend
to the increasing excess of requests (i.e., those which cannot be accommodated in the net-
work at all), which end up having trivial assignments (PoC with smallest priority). This excess
tends to dominate the portion of requests that are optimally assigned as |R| grows large,
which, in turn, makes the relative UB gap reduce.

2.2.6 Conclusions
The TD Problem captures fundamentally the primary requirements of latency-sensitive sys-
tems based on MEC architectures. In this work, we propose a linear integer programming
model for the TD Problem. We model requests’ latency as the classic queuing delay and
approximate it as a linear function of the total achieved throughput in the participating com-
munication links. We approach the problem using the K-SFA and we introduce a shortest flow
selection strategy based on edge-betweenness centrality. In our experiments, we could ob-
serve our technique’s performance and conclude that K-SFA can achieve satisfactory results
even for relatively small values of K. The results presented in this Section will pave the way to
more sophisticated modelling and more efficient approximations, for example, considering
randomized rounding algorithms [36] and other shortest path selection strategies. Further-
more, the framework can be expanded to consider a mathematical modelling for the robust
optimization of the expected QoS under random requests and accounting for uncertainties,
such as chaotic deployment and volatile, mobile UE association. In this scope, we can even
use the resulting stochastic model as a comparison baseline for Realtime problems based on
dynamic and distributed policies.

2.3 Link Optimization in Smart Highway
2.3.1 Introduction

This section addresses the problem of optimizing the location of the Road Side Unit (RSU) for
determining optimal link flow which is used to determine the minimum set of links that is
equipped with traffic monitoring devices to identify vehicle paths in a connected vehicles

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 35

environment. Network connectivity for RSU deployment focuses on reducing link flow con-
nection efficiency and disconnection interval between RSUs and connected vehicles, and
there are observable and non-observable links in RSU.

In V2X, RSU plays a significant role in not only detecting VRUs on the road from mounted
sensors (e.g., camera), but also exchanging data for VRUs detected through wireless com-
munication, relaying messages between VRUs, and integrating information. Advanced sen-
sor technology attached to the vehicle can collect information about the vehicle's speed,
location on the road, and VRUs detected around the vehicle. The vehicle periodically ex-
changes this information with connected vehicles and RSUs installed on the road through
wireless communication.

RSU can also collect information about traffic-based infrastructure (e.g., traffic lights), and
the collected infrastructure information is transmitted to nearby connected vehicles and traf-
fic control integration centers. Based on the information collected by RSU, integrated traffic
guidance and control is possible to optimize traffic conditions. Therefore, it is important not
only to detect VRUs on the road, but also to optimize RSU location for smooth link flow with
surrounding VRUs.

2.3.2 Problem Formulation
The RSUs can observe the position and velocity of the connected vehicle. As shown in Figure
9, RSUs obtain traffic counts from multiple links via V2X, each RSU can simultaneously collect
information for multiple links via V2V communication.

Figure 9. RSUs obtain traffic counts from multiple links via V2V

From the RSU point of view, the flow of a link is an observed flow of a link and a flow of an
unobserved link. The flow of an observed link can be estimated using shock wave theory and
a car-following model at that link [8]. And the flow of the unobserved link is to be inferred
using the node link flow conservation equation based on the observed link flow.

Communication delay is a major cause of measurement error related to data collected by
the RSU, so measurement error is defined as communication delay related to the observed
link flow. The communication delay is assumed to be the sum of the propagation delay and
the data packet queuing delay during V2X communication, and the data packet queuing
delay is the amount of time the RSU waits for a data packet sent by the connected vehicle
to be executed.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 36

It is to define the RSU location formulation model to achieve link flow determination. It is as-
sumed that RSUs should only be located on nodes in the transportation network.

The decision variables ���,�� are binary variables. If the RSU is located at node � ∈ � , then �� = 1.
Otherwise, �� = 0, where � is index for links in a transportation network, � is index for nodes in a trans-
portation network, � is set of nodes in a transportation network, and �� is also binary variable. If link
� ∈ � is allocated to the RSU located at node� ∈ � , then ��� = 0. Otherwise, ��� = 1 where � is set
of links in a transportation network.
The objective function [9][10] aims to minimize the total measurement error associated with observed
link flows and unobserved link

minimize �(�, �) = min (��(�, �) + ��(�, �))

��(�, �) and ��(�, �) are defined as:

��(�, �) = � � ������
��

+ � � ������
��

1 − ���
�

2
∙

� ∑ ������

��(�� − � ∑ �����)�
+ � � ���

1
����

��(�, �) = � �� ��
�

�∈�

− � � ���
��∈�

��
�� ∙ � � −

�∈��

� � ���
��∈��

�
�∈�

where ��(�, �) represents the sum of the measurement errors associated with each observed
link flow. ��(�, �) gives the cumulative quantity of unobserved links connected to non-central
nodes with one unobserved new link, ��� is the coefficient of variation of service time asso-
ciated with the RSU located at node � ∈ �, � is the packed size of each data packed sent
from a connected vehicle to RSU, ��� is the expected information travel time from link � ∈ �
to node � ∈ �, �� is the number of vehicles on link � ∈ � , �� is capacity of RSU located at node
� ∈ �, �� is the set of new links connected to non-centroid node �, and ��

� is the node-link
index: ��

� = 1 if link � is connected to node �, else ��
� = 0.

And there are constraints as follow:

� −
�∈��

� � ���
��∈��

≤ 1, ∀� ∈ �

� ���
�

≤ 1, ∀� ∈ �

� �����
�

≤ ����, ∀� ∈ �

��� ≤ ��, ∀� ∈ �, � ∈ �

2.3.3 Simulation
The above formulation is a multi-objective optimization as a multi-criteria decision-making
domain containing two objective functions to be optimized simultaneously. The epsilon-con-
straint method, which is one of the representative methods for solving multi-objective optimi-
zation problems, is used, and the simulation is based on python and utilizes the pyomo [11]
and PuLP [12] packages for optimization problems to obtain results.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 37

Figure 10 Pareto front generated from the RSU location model

Figure 10 shows the pareto front generated from the RSU location model according to differ-
ent rates. As shown in Figure 11, the maximum cumulative quantity of unobserved links that
guarantee a complete link flow determination is 45, 42, 38, 41, and 43 at rates of 0.2, 0.4, 0.6,
0.8, 1.0, respectively. When the accumulation of unobserved compounds reaches a maxi-
mum, the measurement error reaches a minimum along the pareto boundary. It indicates
that the reduction in inference error associated with the inferred link flow requires an increase
in the measurement error associated with the observed link flow.

Figure 11 The relationship between the measurement error and the penetration rate of the con-

nected vehicle

Figure 11 shows how the measurement error, which is the sum of the propagation delay and
the data packet queuing delay, changes as the penetration rate of connected vehicles
according to the coefficient of variation of service time value increases. When �� is 0, the
measurement error decreases as the penetration rate of connected vehicles increases from
0.2 to 0.6, and the measurement error increases as the penetration rate of connected vehi-
cles increases from 0.6 to 0.8. This is also the case when �� is 0.5.

This is mainly due to an increase in the penetration rate, which significantly reduces delivery
delays, while data packet queuing latency is not significantly affected. This is consistent with
the fact that �� does not significantly affect the measurement error when the penetration
rate is low. However, when �� is 1, as the penetration rate increases, the overall measurement
error continues to increase (excluding from 0.2 to 0.4), which can be inferred that the data
packet queuing delay is sensitive to the penetration rate. On the other hand, more detailed

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 38

research is needed in the future to analyze the phenomenon that the measurement error
decreases again regardless of the size of �� when it is 0.8~1.0.

In conclusion, the RSU location to achieve link flow determination is modelled as a multi-
object optimization problem based on measurement error and inference error, and analysis
is attempted with the pareto optimal solutions. As the measurement error increases along
the pareto front, it is possible to estimate the relationship that the inference error may not
decrease even if the cumulative amount of unobserved links decreases. A complete ana-
lytic problem formulation is not possible because the inference error is formulated indirectly
as the cumulative number of unobserved links, but the analysis is still meaningful in pareto
optimization in terms of measurement error and inference error between links. Further studies
are needed from several perspectives in the future.

2.4 Intelligence Placement and Migration in Smart Highway
In D3.1, we presented our research about state-of-the-art algorithms for distributed intelli-
gence. We described the benefits and the downsides of the centralized and distributed al-
gorithms approach. In this section, we present some first studies on service placement prob-
lem setting and a mathematical formulation for the scenario. Our objective is to use the work
presented in this section and adapt to vehicular networks.

2.4.1 Introduction
Edge computing are designed to support vehicular applications by road services to nearby
vehicles to support more compute-intensive, latency-aware, and even energy-aware appli-
cations while suppressing the latency impact caused by cloud communication while not
overloading the network. Providing these services in the edge requires effective service
placement, as placing them far away from related services can induce latency costs, and
placing all the services on a single device will consume more device resources than are
available, reducing service reliability.

To this service allocation problem, we propose a general Deep Q-Network (DQN) method-
ology for service placement, which considers the placement optimization of multiple inter-
communicating services on a network. This placement optimization considers the improve-
ment of the network performance by minimizing the total impact on the network, while also
improving energy efficiency. These are generally conflicting objectives, defining the problem
as a Multi-Objective Optimization (MOO) problem. Valid placements should satisfy device
constraints, such as available memory, network constraints, such as available bandwidth,
and application constraints, such as maximally allowed latency between two services.

In this section, we use several State-of-the-Art (SotA) Multi-Objective Reinforcement Learning
(MORL) methods to solve the service allocation problem, using the strengths of DQNs to ef-
fectively place the services across the network. Our proposed methodologies use scalariza-
tion and support dynamic weight changes throughout the network lifespan, providing sup-
port for a higher-level control mechanism.

2.4.2 Problem Setting
The service allocation problem is an expansion of the General Quadratic Assignment Prob-
lem (GQAP). The service allocation problem expands on this by putting constraints on both
the devices and the network, whereas GQAP does not consider transport constraints. GQAP
has been shown to be solvable for up to 22 devices, showcasing the problem complexity

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 39

[13]. Additional complexities arise due to applying it to edge computing: the available run-
time of the placement algorithm is generally very low, as it takes seconds to find a solution,
depending on the context. Similarly, the available resources for fog devices are generally
limited, requiring algorithms with low computational complexity. This further bounds the
methodologies applicable to the problem. We additionally extend GQAP to consider MOO,
as the service allocation problem considers multiple competing objectives, defined further
below.

2.4.3 Multi-Objective Optimization
MOO considers the optimization of multiple, possibly conflicting, objectives. This is formulated
in the Equation 1.

The goal is to traverse the search space x ∈ X to simultaneously minimize the cost of the
objective function vector F for o different objectives, while considering k different inequality
constraints, gi , and l different equality constraints, hj . These objectives conflict, thus there is
no single optimal solution, rather a front of non-dominated solutions. This front is the Pareto
Front (PF), where each solution is at least better for one objective while being worse for at
least one other objective. Figure 12 shows an illustration of a Pareto front, where F_1 and F_2
represent arbitrary minimization objectives. Circles represent sub-optimal solutions in the
search space, whereas the squares represent the optimal solutions, or the Pareto front. The
red colour distinguishes solutions which would become invalid if certain constraints are con-
sidered and shows how the Pareto front would reshape under said conditions. Solutions A
and B are non-dominated solutions, signifying that they are worse on at least one objective
while being better on at least one other objective. Both solutions dominate C, which is equal
to B concerning objective F2, but worse for objective F1. However, the search space for the
placement problem is constrained. The solutions which do not satisfy the constraints are
shown on Figure 12 as dark red nodes. By removing these from the search space, it becomes
clear that solution C becomes part of the PF, as B becomes infeasible. However, the entire
PF is not necessary for the service allocation problem, only one solution is required from this
front. The selection of this solution is done by a Decision Maker (DM), which defines the pref-
erences for the set of objectives. This definition is often done using scalarization. By summing
the objectives together, the utility of a solution can be defined as a linear combination of
the objectives. This scalarization is done using a weighted function, where the weights repre-
sent the importance of each objective. Popular techniques for this approach include the
weighted sum approach, which purely uses the weights defined by the DM, and the Cheby-
chev scalarization, which also incorporates a reference vector, giving a search direction to
the algorithm [14]. Scalarization is one of the simplest approaches for solving MOO problems,
but it is often difficult for the DM to find the optimal set of weights. This has an especially large
impact on Machine Learning (ML) scenarios, where the training of weights for a neural net-
work can consume a large amount of time and resources.

Equation 1. Multi-Objective Optimization

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 40

Figure 12. Illustration of a Pareto front, F_1 and F_2 represent arbitrary minimization objectives.

2.4.4 Approach
 Linear Scalarization

Linear scalarization is the baseline approach for solving generic MOO problems. It uses the
strength through simplicity approach of the weighted sum, where objectives are multiplied
with a predefined weight and summed together, as defined in Equation 2. This approach has
been applied in the SotA already, including Tang et al. [15]. While this approach enables
tackling MOO problems with single-objective approaches, it suffers from the inability to han-
dle a change in the weights of the objectives. To this end, we propose expanding on the
scalarization approach by intelligently managing the weights of the objectives, as outlined
below.

 Deep Optimistic Linear Support
One approach proposed by Mossalam et al. is the Deep Optimistic Linear Support Learning
(Deep-OLS) algorithm [16]. This algorithm supports bi-objective optimization through scalari-
zation. The approach first trains two Deep Neural Networks (DNNs) on the weight extrema,
one optimized for each objective, and then uses the two DNNs to predict the utility of a
solution. This is then used to create a Convex Coverage Set (CCS) and apply Optimistic Linear
Support (OLS) to select the weights for which a new policy could gain the most improvement
in finding a new optimal policy. This results in multiple trained agents, each one optimal for a

Equation 2. Weighted Sum

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 41

range of weights. These agents can then be swapped at runtime based on the weights re-
quired. The approach aims to minimize the amounts of networks trained to cover the weight
space. This approach has been expanded upon for application on the placement problem.
Due to the current limitations of the Deep-OLS algorithm, only two objectives are used. To
keep the objectives as conflicting as possible, a focus was put on both a device and a net-
work optimization objective. The network objectives were scalarized together and normal-
ized to the range [0, 1]. This was subsequently also done for the device objectives. This ap-
proach reduces the reward vector to two objectives.

 Conditioned Network
Our final approach uses a Conditioned Network (CN), removing the need of having multiple
pre-trained agents completely, by introducing the weights into the observation space of the
agent. As proposed by Abels et al. [17], the approach is based on a Universal Value Function
Approximator (UVFA), where a network learns state and goal embeddings, using a distance-
oriented metric to combine both. These goal embeddings are represented in MORL prob-
lems as the weight vectors. Training happens end-to-end, with the state and goal embed-
ding as input and the multi-objective Q-values as output. In addition, a Diverse Experience
Replay (DER) methodology is applied to the CN, which is a replay buffer which focuses on
diversity. This is especially important, as the network should memorize the impact of the dif-
ferent weight vectors as well as the impact of the state-action pairs. Their approach is shown
to have improved results compared to various other methodologies, including the multi-net-
work approach.

2.4.5 Results
For evaluation, a use-case was crafted of 10 devices and 10 tasks, providing 10^10 possible
different placements. The networks and additions were built using RLLib. Four objectives were
evaluated: Energy, Worst Case Execution Time (WCET), Latency and Bandwidth. For the
Deep-OLS approach, Energy and WCET were scalarized as device objective, and Latency
and Bandwidth scalarized as network objective. Due to instability and slower convergence,
the vector Q-values, proposed by Mossalam et al. were not used [16]. We expanded on the
existing approaches of the Deep-OLS and Conditioned networks by building them using a
Double Dueling DQN, which improves general stability and convergence. The hyperparam-
eters used are found in Table 5.

Table 5. Hyperparameters

Hyperparameter Value

 γ 0.95

Learning Rate 0
ε 150 000

Batch Size 32

Buffer Size 20 000

Weight Change Interval 10 000 Steps

The results were compared with a Non-dominated Sorting Genetic Algorithm II (NSGA-II) ap-
proach, as proposed in previous research [18]. This algorithm was configured with a popula-
tion size of 100, running for 1000 iterations. Additionally, a comparison was made with a stand-
ard random search, iterating over 1000 possibilities before finishing.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 42

Figure 13. Execution Time

All algorithms were generally able to find solutions that satisfied all constraints. Figure 13 rep-
resents the average time required to find a single solution. We pooled the MORL algorithms,
as they had similar networks and consequently similar inference time. The Cloud solution re-
fers to placing all possible tasks on the cloud, showcasing the traditional approach. The log
scale showcases that the proposed MORL approaches outperform the traditional NSGA-II
algorithm by a factor 5. Note, however, that both NSGA-II and Random Search depend on
the number of iterations to determine timing, whereas the proposed MORL algorithms have
static timing and resource usage in nature. More interesting results are found on Figure 14,
which shows the average reward over 50 runs. The x-axis shows the weight for the network
objective, where a 0 is the corner weight focusing on device objectives and 1 is the opposite
corner weight focusing on network objectives. Note that the cloud solution does not satisfy
the latency solution and is invalid, being purely shown as reference. It is clear that the NSGA-
II algorithm finds the optimal solution. This is at the trade-off of consuming considerably more
time and resources. The bi-objective Conditioned Network approach comes quite close to
the NSGA-II algorithm, which showcases that a trained network is a valid approach in re-
source-constrained service placement. Interestingly, the neural network generally also finds
better solutions in 50 timesteps than the random algorithm does in 1000. This is partially ac-
credited to a light skew in the normalization, making network objectives slightly more valua-
ble. In addition, if a corner weight of the Deep-OLS fails to converge, the subsequent search
becomes infeasible. We notice that the conditioned network trained on four objectives suc-
ceeds at finding useful solutions but is outperformed by nearly all other approaches. This is
likely due to the large jump in complexity between solving for two and four objectives. The
results showcase the brittleness of applying Deep-OLS in practical scenarios. The approach
depends on finding the policies for the weight extrema first, but if these values are far apart,
the algorithm stops working as expected. In addition, the approach suffers from search
space complexity differences. In our scenario, it is considerably easier to optimize for network
objectives, by putting all services on the same device, than it is to optimize for device objec-
tives. This mismatch makes it difficult to build an automated Deep-OLS search methodology,
as the network objective policy converges considerably faster. We recommend to instead
train individual policies with individual hyperparameters per weight and apply OLS on top.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 43

Figure 14. Average Scalarized Reward

2.4.6 Future Steps
Using the MORL techniques described, further objectives, such as privacy and security, and
constraints, such as software requirements, can easily be added. The impact of these added
objectives and constraints should be evaluated, and the scalability of the proposed tech-
niques validated. The trained models could be further improved to reduce resource con-
sumption and inference time, using network pruning, as proposed by Balemans et al. [19].
Major improvements will most likely also be achieved when evolving towards a distributed RL
methodology, where the problem is reduced to multiple sub-problems, improving scalability
but reducing the quality of the found solution.

2.5 Delay-aware offloading task association for networked
computing

The networked computing approach represented in D3.1 [6] involves several network and
resource management decisions to be made before the access to a suitable computing
server can be provided by the network operator. One of the most important decisions is to
decide the association of the computing tasks to access points and attached edge servers.
The association decision is nontrivial because there are a number of factors affecting the
end-to-end offloading delay. In general, the transmission delay effect of bi-directional of-
floading communication links as well as computing delay of the servers must be included in
the decision-making process.

In this section, we study the offloading of computing tasks of users within the network area of
interest. Typical computationally involved offloading tasks involve e.g., 3D video encoding
for virtual reality and object detection from a video frame for augmented reality purposes.
The main aim of the deployed decision-making framework is to maximize the network delay
coverage probability which corresponds to a fraction of users that experience target of-
floading delay deadline. We apply both centralized and distributed delay-aware association
approaches and evaluate their delay coverage probability in a network simulator. The target
high-level server access model is illustrated in Figure 15. It involves on-site users participating
some event and willing to upload computing tasks to proximity servers, heterogeneous wire-
less access point network, and edge servers at a wired proximity to the closest access point.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 44

Figure 15. Target heterogeneous server access model for computation offloading.

2.5.1 Problem
We consider N users randomly deployed in a network which involves M heterogeneous ac-
cess points (APs) in a target region of interest. Each user has a computing task that it wishes
to offload to a computing server (CS) and then receive the result within a target delay dead-
line. The nth computing task is associated with the mth AP-CS pair if the association decision
variable ��� is 1, and 0, otherwise.

Let �� and �� be the maximum capacity of the mth AP and CS, respectively. The former is
measured as a sum over allocated resource blocks ��� whereas the latter is the number of
computing tasks that can be processed in the given server. Let ��� be the user utility of the
nth user associated to mth AP-CS pair which is selected to be the inverse of the sum of the
mean delay caused by the uplink ���

�� , computation server ���
�� , and the downlink ���

�� . The
constrained optimization problem at hand is given by

max
���

�� � ������

�

���

�

���
�

subject to

��� = �
���

�� ����
�� ����

�� , ∀�, � (offloading utility)

��� ∈ {0,1}, ∀�, � (binary decision variables)

∑ ���
�
��� ≤ 1, ∀� (association to one AP)

∑ ������ ≤ ��, ∀� �
��� (max AP capacity)

∑ ��� ≤ ��, ∀� �
��� (max CS capacity)

where the applied constraints are explained in the respective parentheses. The uplink and
downlink delays for a computing task are calculated via division of number of transmitted
bits and achieved link bit rate while the server delay is calculated via division of number of
needed computation clock cycles and circuit clock rate.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 45

2.5.2 Applied Solution Frameworks
In order to resolve the above integer linear programming problem, we first relax the binary
task association variable ��� to be a continuous-time fractional decision variable which has
zero lower bound and upper bound of one. After finding the fractional decisions variables,
the binary decision variables are found by rounding to the nearest integer.

We then apply two different approaches to resolve the relaxed problem based on both cen-
tralized and distributed control mechanisms. In the former approach, it is assumed that there
is a central controller which obtains the utility information from each candidate task associ-
ation, makes all the decisions, and then informs the respective AP-CS pairs which tasks are
allocated to them. In this case, the interior point approach is applied to solve the resulted
centralized linear programming problem (cf. [31]).

Regarding the distributed approach, the main goal is to allow each user offloading a task to
decide which AP-CS pair to associate. In this case, we modify the Lagrange decomposition
approach originally proposed in [32] which does not consider offloading end-to-end delay
with server offloading computing. Specifically, the Lagrange decomposition of the problem
with two coupled constraints becomes �(�, �) = ∑ ∑ �������� − ∑ ∑ ���������� −
∑ ∑ ������� + ∑ ��� �� + ∑ ��� �� where � and � are the Lagrange vector multipliers. After
some manipulations, the coupled constraints become separable so that each user can de-
cide the computing task allocation so that the mth AP-CS pair is selected for the nth task that
maximizes the function arg max

�
 (��� − ����� − ��) while respecting the target constraints

The gradient decent method is used to find the Lagrange multipliers at each AP-CS pair
which then broadcast the values to assist the user-induced task association decisions.

2.5.3 Results
The main aim of the simulation study is to reveal the delay coverage probability performance
as function of different delay targets for the computing task association concepts presented
in the previous subsection. Recall that the delay coverage probability corresponds to the
fraction of users that achieve the target offloading delay performance in a network region
of interest. It is assumed that if no association is possible for some tasks, the task immediately
causes a delay outage event.

Figure 16. A snapshot of target heterogeneous network topology

-1000 -500 0 500 1000
x-coordinate (m)

-1000

-800

-600

-400

-200

0

200

400

600

800

1000
User devices
AP-CS tier 1
AP-CS tier 2

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 46

In the target simulation network, we deploy a two-tier network architecture in the region of
interest with the radius of 1000 m. A snapshot of the network topology is shown in Figure 16
and the main simulation parameters and used values are provided in Table 6. Matlab
toolboxes are utilized where possible.

Table 6. Main simulation parameters and values.

Parameter Value

Network radius 1000 m

Network architecture Heterogeneous 2-tier

Path loss model UMi_A

Shadowing Lognormal; 3dB

Transmission powers 43 dBm (Tier 1 AP)
27 dBm (Tier 2 AP)
23 dBm (Device)

Node densities Tier 1: 19 APs (deterministic)
Tier 2: 90 APs (uniform)
Users: 900 users (Poisson)

Number of task bits 46 kbit

Bandwidth per task 5 MHz

Noise power -174 dBm/Hz

Carrier frequency 2 GHz

AP bandwidth 60 MHz

CS task capacity 10

Mean cycles per bit 1000 (exponential)

CPU rate 3 GHz

In Figure 17, we first illustrate the relative contributions of different parts of offloading delay
regarding the uplink for uploading the video frame, server for finishing the computing task,
and downlink for returning the computing result within the uploaded video frame. In this
case, we have used the standard distributed received power aware association method
which favours the performance of the downlink delay contribution when selecting the task
association. It is seen that, as expected, the downlink performs the best followed by that of
the server and uplink delay coverage sub-contributions.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 47

Figure 17. Comparison of different parts contributing on overall offloading delay coverage as func-

tion of set delay target for power-aware association.

We next move to evaluate the comparison of the centralized and distributed delay-aware
task association with a standard power-aware association approach discussed above. In
Figure 18, we first present the delay coverage probability for the end-to-end offloading delay
for the case where the capacities of the APs and CSs are unlimited. It is seen that after certain
delay threshold, the delay-aware approaches start to clearly outperform the power-aware
method as it is able to select the associations more efficiently using the delays of all subparts.
Since the capacity constraints of APs and CSs are not activated in this case, the performance
of centralized and distributed approaches for the delay-aware method are quite similar. In
Figure 19, we then activate the capacity constraints, and it is visible that the performance
gets worse because the association opportunities are reduced with capacity limitations.
Moreover, the difference between delay-aware and power-aware approaches start to in-
crease. This is because, unlike the delay-aware approaches, the power-aware approach
does not use the information on the capacities of the APs and CSs. Furthermore, it becomes
more difficult for the distributed approach to keep up with the centralized approach be-
cause the distributed approach is not directly aware of other task association decisions.

Figure 18. Comparison of different task association approaches with unlimited AP and CS capacities

as function of target offloading delay.

100 101 102 103

Delay (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Uplink
Server
Downlink
Offloading

100 101 102 103

Offloading delay (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Power-aware; distributed
Delay-aware; distributed
Delay-aware;centralized

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 48

Figure 19. Comparison of different task association approaches with limited AP and CS capacities as

function of target offloading delay.

2.5.4 Conclusions
In this subsection, delay-aware computation task association methods are studied under a
networked computing framework where both communication links and server computation
affect the end-to-end delay. It is demonstrated how delay-awareness can be beneficial in
comparison with power-awareness with regards to delay coverage performance. Moreover,
the performance relationships between centralized and distributed association methods are
illustrated. In future work, the inclusion of computation allocation methods for each task will
be examined to further reduce the overall delay of edge servers.

100 101 102 103

Oflloading delay (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay-aware; centralized
Delay-aware; distributed
Power-aware; distributed

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 49

3 Architectural Techniques for Distribution of Intelligence
The overall goals of DEDICAT 6G include transforming beyond 5G networks into a smart con-
nectivity platform. The platform needs to be highly adaptive, ultra-fast, and dependable/re-
silient for supporting securely innovative, human-centric applications tentatively by combin-
ing communication infrastructure with the provision of computation and storage resources
at the edge to allow for the flexible realization of the envisaged perceived very low latency,
ultra-fast response time, energy-efficiency, high productivity, and low cost. The projected
numerical key performance indicator improvements are hard to achieve via the old/current
means of increasing the clock rate of processing units, speed of communication links and
incremental modifications to the methodology due to the complexity of the networked sys-
tem and approaching fundamental limits of computation and communication technology
[42][45]. The most promising methods left are architectural and algorithmic improvements
addressing the performance, productivity, utilization and energy-efficiency issues of compu-
tation and communication in the network.

This section summarizes the work being done for distribution of intelligence (DoI) via investi-
gation of low-level architectural techniques and engines utilizing them as well as employing
the higher-level algorithms and conventions discussed in the previous sections of this docu-
ment and WP2 deliverables.

3.1 Introduction
Intelligence can be characterized here as any computation and related communication
that changes the state of the network in a meaningful way.

From a point of view of computation, the network can be seen as an entity consisting of a
high number of computing nodes connected together via communication links. The nodes
are not homogeneous but anything from high-performance data centers and edge servers
down to user equipment and miniature IoT computing devices. Some of them have a more
complicated internal architectural structure, featuring multiple processor cores, CPUs, pro-
cessor cards and clusters of them with internal communication channels, as well as memory
and input/output devices. Also, communication links are typically heterogeneous. In addi-
tion, neither the computational workload of the network nor its hardware components are
constant or homogeneous but alter more or less frequently all the time, depending on the
prevailing user data traffic distributions and acts of service providers. Let us call computation
here parallel if it happens simultaneously in multiple units within a node and distributed if
multiple nodes are involved.

In order to get the best performance out of the network, the computation needs to occupy
intra-node units and be distributed among the network nodes so that the overall computing
capacity would be maximized and the resource usage, e.g., time, energy, design effort,
building and operating costs, would be minimized while ultimately supporting the designated
use cases. A typical network node alone has more than a thousand design parameters not
to mention the plurality of nodes and fitting the subsets of the computation into them. It is
therefore evident that determining the optimal distribution is a very demanding multi-target
nondeterministic polynomial (NP) complete problem, which cannot be solved with the cur-
rent technology [33]. The current 5G systems approach distribution by relying on simple of-
floading functionality from UE to the network, virtual machines allowing flexible allocation of
resources in the cloud, containers reducing the state of computation, multicore CPUs allow-
ing (constrained) parallel processing and a programming paradigm relying mostly on inde-
pendent sequential components and asynchronous execution of threads.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 50

To boost the 6G network-level architectural design decisions, the possibilities of low-level ar-
chitectural techniques and integration of them to entities are considered. For flexible and
efficient placement of computation, an architecture utilizing the following techniques, such
as (i) swift context switching, (ii) specific patterns of computation and communication, (iii)
balancing the computational and communication load, (iv) moving computation, (v) re-
ducing the state of computation, (vi) cost-efficient synchronizations, (vii) easy programma-
bility and (viii) efficient placement of computation, overcoming the limitations of 5G network
and processing solutions could be potentially applied (see Figure 20).

Figure 20. Architectural techniques for distribution of intelligence.

In the following subsections, we discuss about using VTT’s parallel processor framework and
the ideas presented in this project to form a powerful edge processor. We go through pre-
liminarily at low level, how such processor would perform against the existing industry stand-
ard solutions. The commercial exploitation of this technology will be investigated as a part of
our effort (involving likely an external industrial partner) to make it gradually available in the
markets.

Higher-level improvements are searched also from an Orchestration Engine that will serve as
an interface between the DEDICAT 6G Decision-Making Functional Components and the
NFV Orchestrator to properly instantiate ad-hoc network slices and assist the Decision-Making
Functional Group (FG) in the application of the instantiation, scaling, or migration network
service/slices orchestration procedures according to the outputs generated by the algo-
rithms in this FG.

3.2 Discussion on Edge Processor Integrating the low-level
Architectural Techniques

In order to solve the performance, resource efficiency and usability problems behind the low-
level architectural techniques listed above, discussed in more detail in D3.1 (cf. [6]) and meet

Edge server
Edge server

Data Center

Edge server

Edge server

REGION

REGIONREGION

Edge server

Edge server

Edge server

Edge server

Edge server
Edge server

Edge server

Edge server

UE
UE

UE

(i) Swift context switching

(ii) Specific patterns of computation and communication

(iii) Balancing the computational and communication load

(iv) Moving computation

(v) Reducing the state of computation

(vi) Cost-efficient synchronizations

(vii) Easy programmability

(viii) Efficient placement of computation

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 51

the ambitious DEDICAT 6G KPI targets T 6G, let us consider utilizing VTT’s multiprocessor frame-
work [41] and the findings of this project to outline an efficient edge processor architecture.

A processor utilizing such architecture could be used as a key computing component for
building efficient networked computing devices, such as edge servers and cloudlets, sup-
porting efficient distribution of intelligence. VTT’s aim is to study exploitation possibilities of the
edge processor as a part of larger commercialization effort of general-purpose parallel pro-
cessor IP funded by VTT and Business Finland. One concrete possibility here is to find a spin-
off company to take care of further development and bring processor products to the mar-
ket with suitable industrial partners since manufacturing leading edge processors is highly
expensive and requires a lot of manpower and expertise.

The Thick Control Flow Processor Architecture for Edge (TPA-E) is a scalable multiprocessor
architecture that can be configured at design time for various constellations lending widely
solutions from the original TPA [39] and VTT’s processor framework [41] aiming generally at
addressing the performance and programmability issues of current general-purpose multi-
core architectures. The framework defines principles how to build efficient Emulated Shared
Memory (ESM) processors utilizing the Thick Control Flow (TCF) abstraction; how to make them
flexible and expandable with accelerators; how to achieve backwards compatibility with
existing commercial product lines; includes a number of processors, interconnect and
memory system architectures and designs needed for that purpose and outlines the meth-
odology to develop program. A TCF is an abstraction of parallel computation that merges
self-similar threads into a single computational entity that is independent of the number of
threads [44]. Self-similarity refers here to properties of flowing through the same control path
and having homogeneous operations. We call the component threads of a TCF fibers to
distinguish them from ordinary threads having their own control. The fibers within a TCF are
executed synchronously with respect to each other in order to simplify parallel programming.
In ESM, the latency of the memory system is hidden via multithreading and sufficient band-
width, the synchronization cost is virtually eliminated using wave synchronization and low-
level parallelism exploitation is optionally improved by chaining of Functional Units (FU) as-
suming there is enough parallelism in the functionality at hands [46][43][35]. Instead of multi-
threading, TPA-E uses a similar technique for fibers, called interleaved multifibering. This lets a
fiber to execute other fibers while it is making a memory reference. If the executed program
contains enough fibers the latency of the shared memory system can be completely hidden.
Sufficient interconnection bandwidth is provided by using an M-way multimesh network. The
synchronization wave is used to separate memory references belonging to consecutive steps
of execution by issuing all fibers followed by a synchronization message. Synchronization mes-
sages are routed in the network through all possible paths so that when a synchronization
message arrives to a router, it blocks the message (and related paths) until a synchronization
message can be found in all inputs. Then the router fetches all the incoming messages and
sends out a synchronization message via its outputs. Low-level parallelism is supported in TPA-
E by organizing FUs as a sequential chain rather than in parallel so that consecutive instruc-
tions can be executed regardless of possible interdependencies within a step.

A TPA-E multiprocessor consists of F Frontend (FE) processing units and B Backend (BE) pro-
cessing units, intercommunication networks and a memory system (see Figure 21). FEs take
care of fetching instructions from the memory and executing the common parts of TCFs, such
as control of the flow and base address computation. In turn, BEs handle execution of indi-
vidual fibers. The memory system consists of two parts: Depending on the FE architecture of
choice, FEs are connected to either a traditionally organized Symmetric MultiProcessor (SMP)
or NonUniform Memory Access (NUMA) memory system and BEs are attached to an ESM
system employing a multimesh interconnect. The latter supports synchronous operations and
parallel-computing specific access patterns such as concurrent reads and writes, reductions

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 52

and multiprefix computations as well as powerful atomic compute-update operations. The
FE and BE parts of the memory system are also connected together.

Figure 21. High level organization of TPA-E (FE=frontend, BE=backend, M=memory, S=switch).

A TPA-E FE system resembles an ordinary multicore CPU and in fact the VTT’s multiprocessor
framework allows a processor designer to use a variant of existing commercial CPU core as
FE. In this project, however, we use the framework default, the Minimal Pipeline Architecture
(MPA) Very Long Instruction Word (VLIW) processor [34] as the FE architecture. MPA features
a number of FUs commanded by dedicated sub-instruction fields in a single (compound)
instruction word. The original version of MPA features a special minimal pipeline with only two
stages—fetch and execute with no pipeline delays in the case of control transfer. There are
some modifications to the pipeline to allow multi-TCF operation but delay-free operation of
the pipeline also for control operations was retained.

A BE is a special processing unit resembling a MultiBunched/Threaded Architecture with
Chaining (MBTAC) ESM processor core [40] and containing logic for operand selection, chain
of FUs, latency compensation unit and write back logic. However, a TPA BE does not include
an instruction fetch unit and sequencer. In TPA-E these belong to the FE system.

For efficient edge computing, TPA-E is aimed to support distribution of intelligence in both
processor and network edge region levels.

Here we present a high-level view of the processor only since TPA-E utilizes VTT’s multiproces-
sor framework not belonging to this project. In addition, VTT aims to commercialize its proces-
sor technology and wants to protect the low-level IP independently of this project.

To figure out, how well TPA-E compares to current commercial solutions and addresses the
problems behind the low-level architectural techniques of D3.1, we wrote a number of par-
allel test kernels in C/pthreads and equivalent TCF-aware programming language, per-
formed execution time and program code length measurements on two industry standard
processors (4-core Intel Core i7 6820HQ and 18-core Xeon W 2191B) and an entry-level 1-FE
16-BE TPA-E. TPA-E execution time was measured with a help of TCF simulation software of
VTT’s processor multiframework. Since there is no silicon implementation of TPA-E, we as-
sumed that it would run at the same 3.2 GHz as Core i7 and Xeon W. The measurement

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 53

included here represent processor/computer level solutions whereas region and network
level effects are aimed to be studied for D3.3. In the following we present results of the meas-
urements grouped similarly as in D3.1:

Swift context switching — Context can be defined as the minimal set of data used by a com-
putational task that must be saved to allow task to be interrupted and later continued from
the same point. Swift context switching is important to support multitasking, i.e., running mul-
tiple computational functionalities in the same processor. In principle, all CPUs capable of
executing multitasking operating systems supporting switching of threads but the latency of
thread switching is typically a few hundred clock cycles. This is not a problem when executing
independent threads that are switched infrequently enough. However, if the threads of the
functionality at hands require dense intercommunication, the performance can be cata-
strophically poor as indicated by our measurements of memcopy kernel as a function of the
number of threads on Core i7 and Xeon W processors (see Figure 22). The behaviour of both
processors is similar—the execution time decreases as the number of cores increases until
there is one thread per processor core. After that, the execution time stays the same until
there are two threads per core since Intel processors feature a two-way multithreading
called hyperthreading. Finally, as the number of threads exceeds the number of hardware
threads the execution time instantly jumps up by almost three orders of magnitude. This is
caused by thread switching time that cannot anymore be hidden with hardware threads,
synchronization costs and especially the operating system scheduler, which allocates a way
too long time slice for each thread performing the final synchronization—the only place
where there are dependencies in the memcopy kernel. For comparison purposes we also
show the execution time level of TPA-E performing the same task with a single TCF having
maximal parallelism. It avoids this problem with its zero-switch latency multifibering mecha-
nism and allows a programmer to easily get the full performance out of the hardware.

Specific patterns of computation and communication——Patterns of parallel and distributed
computation and communication refer to situations where multiple computational threads
interact in a regular way that can be seen as a pattern. The most popular patterns include
parallel execution, reduction, spreading and permutation. These are used, e.g., in parallel
processing and communication, collection of data, multicasting as well as in certain map-
ping tasks.

As a part of our development work, we studied five alternative techniques for efficient multi-
operations in TPA—a fast single-instruction multioperation (FS), a symmetric two-instruction
multioperation (S2), a backend-frontend multioperation (BF), an optimized two-instruction
multioperation (O2) and a multioperation load (ML). For this WP, we measured the execution
time of memory-to-memory reduction patterns in TPA-E supporting the variants and com-
pared the results to sequential algorithm without any of these operations.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 54

Figure 22. Execution time of blocked version of the memcopy benchmark (log scale).

According to our measurements, the multioperation techniques can speed up execution of
memory-to-memory reductions by a factor of 15.57 w.r.t. sequential execution and by a fac-
tor of 43.82 w.r.t. 16-processing unit baseline machine (see Figure 23).

Figure 23. Relative performance of a multioperation reduction in TPA-E as a function of the input data

array size.

To demonstrate how well practical low-level patterns are supported in TPA-E with respect to
available resources, we determined the fraction of the memory bandwidth for six memory
access patterns—blocked, interleaved, random, matrix multiplication row style, matrix multi-
plication column style and concurrent memory access. The results, comparing TPA-E to Core
i7 and Xeon W, are shown in Figure 24.

According to the measurements, Core i7 and Xeon W utilize their memory bandwidth only
for blocked access pattern while TPA-E is able to retain virtually the maximum bandwidth

0,00001

0,0001

0,001

0,01

0,1

1

10

1 2 4 8 16 32 64 128 256 512 1024

Ex
ec

ut
io

n
tim

e
(s

)

Number of threads

Core i7

Xeon W

TPA-E

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

2048 4096 8192 16384 32768 65536

Re
la

tiv
e

pe
rf

or
m

an
ce SEQ

FS

S2

FB

O2

ML

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 55

regardless of the access pattern. The fact that 18-core Xeon W shows significantly weaker
results than 4-core Core i7 may indicate that there is a serious intrinsic scalability problem in
current architectural approach of multicore processors and systems built on top of them as
we have been predicting [38].

Figure 24. Fraction of the bandwidth utilized for shared memory access patterns.

Cost-efficient synchronizations—Synchronization is the key mechanism to ensure the correct
behaviour of parallel and distributed software at hands in the case of inter-thread depend-
encies. Unfortunately, in current multicore systems the cost of synchronization can be very
high. The main reason for this is the asynchronous nature of execution in multicore CPUs,
computers with multiple processor sockets, clusters of computers and especially in the net-
work. A notable fact is that the need for fast and efficient synchronizations is much more
stringent in fine- grained parallel computing than in coarse-grained distributed computing
that is not sup- posed to be able to execute fine-grained parallel algorithms efficiently.

We compared the execution time of barrier synchronization in Core i7 and Xeon W proces-
sors to wave synchronization employed by TPA-E and observe that TPA-E synchronizes at least
1000 times faster for the cases in which there is large enough number of threads for full per-
formance (see Figure 25). In addition, the synchronization cost in Intel processors makes a
jump of multiple magnitudes up as the number of hardware threads is exceeded.

Easy programmability—Programmability is said to be good if the functionalities can be ex-
pressed compactly and naturally without unnecessary architecture-dependent constructs.
A key factor is also portability and ability to retain performance with respect to the number
of execution units among a family of processors using the same approach but having a dif-
ferent hardware configuration. The main challenges of current systems include the asynchro-
nous nature of execution and sensitivity to non-trivial memory access patterns. Distributed
systems, such as regions of edge servers, pose further challenges to programmability since
the latencies are much higher, and throughputs lower than those within parallel machines.
Programmability is directly proportional to productivity of software development, and thus
cost of the software. TPA-E solutions for this come from the ESM architecture and TCF abstrac-
tion.

The TCF versions the kernel functionalities are written as a single TCF, maximally parallel, syn-
chronous programs utilizing available primitives of parallel computing where relevant. There
is no need for explicit synchronizations in the tested TCF algorithms. Consider three alternative
ways of implementing functionalities in parallel for Intel processors: The straight-forward

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

blocked interleaved random mmul-row mmul-col concurrent

Fr
ac

tio
n

of
 th

e
BW

 (%
)

Core i7

Xeon W

TPA-E

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 56

Pthreads versions are written similarly as the TCF versions except that synchronizations are
added to the end to be able to determine when all the threads have completed their tasks
and wherever they are needed to guarantee the correct execution order of operations as-
signed to different cores. The matched parallelism versions limit the number of threads to a
given maximum, which in our case is the number of processor cores P. The matching is done
by employing loops that process at most P elements (and threads) at the time. We expect
matched parallel versions to be substantially faster than straight-forward ones. This is because
matching eliminates interference between time slots defined by the operating system sched-
uler and actual computation as well as the thread management overhead, especially in the
case of fine-grained parallel functionality. The blocked versions divide the processed data
elements to blocks that are executed in the processor cores in parallel. This kind of mapping
and implied partitioning should also improve the performance over the matched parallelism
versions due to increased locality and reduced inter-processor communication.

Figure 25. Execution time of a barrier synchronization (log scale).

In order to measure the complexity of programming, we implemented three versions of ma-
trix addition algorithm A:=A+B for Intel multicore CPU systems with C/pthreads and a single
TCF version for a system utilizing ESM and TCF with a C/pthreads-style parallel language. From
the programs, we determined the number of active code lines. Three program versions for
the Intel system were included since the simplest straight-forward pthreads version interferes
in a very ugly way with the operating system scheduler and gives 27.8 million times slower
execution time in Core i7 and 6.1 million times slower execution time in Xeon W than in TPA-
E. The matched parallel pthreads version in Core i7 and Xeon W gave 14.5x and 99.1x slower
performance than in TPA-E, respectively. Finally, the blocked version comes closer to TPA-E
performance. In Core i7 it executes 4.5 times and in Xeon W 1.2 times slower (or 36% per
processor core slower) than that in TPA-E.

Figure 26 shows implementations of as active code lines. Note that the number of active
code lines for pthreads algorithms increases as the execution time decreases and that the
ESM version is 2, 3 and 6 times shorter, respectively. In addition, pthreads needs initialization,
thread creation and termination code. Note also that the trade-off between the perfor-

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

2 4 8 16 32 64 128 256 512 1024

Ex
ec

ut
io

n
tim

e
(s

)

Number of threads

Core i7

Xeon W

TPA-E

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 57

mance and software complexity in Intel processors that forces programmers to employ com-
plex and error-prone programming techniques to have a decent performance whereas TPA-
E is not affected.

Figure 26. Parallel matrix addition kernel for Intel CPUs and an TPA-E.

Efficient placement of computation—The best performance is achieved when the right data
is in the right place at the right time since moving both data and computation, i.e., execution
of operations take time. Additional complications come from the fact that the farther away
data is from the place where it is needed, the longer time it takes to obtain it and the more
dependencies there are, the longer it takes to execute if there are resource limitations. Ad-
ditional complications can come from possible contention of traffic in the network caused
by non-optimal placement of data and functionality in the network, reliability issues poten-
tially requiring resubmissions, protocol issues, deadlocks, livelocks, race conditions, sequen-
tialization, physical defects, noise etc.

Current multicore systems are highly sensitive to data and functionality placement. These
phenomena are augmented in the distributed computers such as cloudlets and regions of
edge servers due to high latencies and limited bandwidth.

We measured the execution time of the matched parallelism and blocked versions of the
memcopy program as a function of the number of threads in systems with 4-core Intel Core

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 58

i7 and 18-core Xeon W processors. Both processors feature two way-multithreading (or hy-
perthreading as Intel calls it) where a processor core can execute up to two threads without
typical 100+ clock cycle thread switching overhead.

Figure 27. Execution time of matched parallel and blocked versions of the memcopy benchmark

(log scale).

We figured out how these improvements in low-level architectural techniques show up as
performance and software complexity in applications utilizing the patterns of parallel and
distributed computation and communication. For Intel processors all three programming
styles (straight-forward, matched parallel and blocked) are included while the TPA-E versions
utilize just one TCF. The following six Figures present the results of our initial performance and
code length measurements.

According to our measurements, TPA-E executes straight-forward benchmarks in average
56.2 million times faster than Core i7 and 11.9 million times faster than Xeon W with three times
shorter programs (counted as active program lines). These massive speedups are caused by
the joint effect of slow synchronization and context switching as well as operating system
scheduler allocating a way too long slices for the threads. In matched parallel versions the
speedups for TPA-E drop to 26.6x and 164x, respectively. The Intel processor program length
overhead increases to 3.5x. These programs eliminate the extremely slow context switching
in barrier synchronizations but suffer from last level cache line sharing. Finally, in blocked tests,
TPA-E is in average 9.32 times faster than Core i7 and 3.35 times faster than Xeon W with one
sixth of the active program lines.

0,00001

0,0001

0,001

0,01

0,1

1

10

1 2 4 8 16 32 64 128 256 512 1024

Ex
ec

ut
io

n
tim

e
(s

)

Number of threads

Matched Core i7

Blocked Core i7

Matched Xeon W

Blocked Xeon W

TPA-E

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 59

Figure 28. Relative performance of straight-forward parallel versions of the kernels (log scale).

Figure 29. Relative performance of matched parallel versions of the kernels (log scale).

Figure 30. Relative performance of blocked versions of the kernels (log scale).

1 1 1 1 1
4,52 5,26 4,56 6,38 3,43

28250398

220924323

27822589
83351294

38734844

0

1

10

100

1 000

10 000

100 000

1 000 000

10 000 000

100 000 000

1 000 000 000

memcopy reduce matrix-add permute spread

Re
la

tiv
e

pe
rf

or
m

an
ce

Core i7

Xeon W

TPA-E

1 1 1 1 1

0,11
0,16 0,15

0,45

0,10

13,47

71,25

14,52

41,50
22,92

0,01

0,1

1

10

100

memcopy reduce matrix-add permute spread

Re
la

tiv
e

pe
rf

or
m

an
ce

Core i7

Xeon W

TPA-E

1 1 1 1 1

3,50
2,25

3,70

1,69

3,39
4,19

16,84

4,46

35,64

6,27

0,1

1

10

100

memcopy reduce matrix-add permute spread

Re
la

tiv
e

pe
rf

or
m

an
ce

Core i7

Xeon W

TPA-E

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 60

Figure 31. Relative active code line count of straight-forward versions of the kernels.

Figure 32. Relative active code line count of matched parallel versions of the kernels.

Figure 33. Relative active code line count of blocked parallel versions of the kernels.

0

2

4

6

8

10

12

memcopy reduce matrix-add permute spread

Re
la

tiv
e

H
LL

 c
od

e
le

ng
th

Intel

TPA-E

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

memcopy reduce matrix-add permute spread

Re
la

tiv
e

H
LL

 c
od

e
le

ng
th

Intel

TPA-E

0

1

2

3

4

5

6

7

memcopy reduce matrix-add permute spread

Re
la

tiv
e

H
LL

 c
od

e
le

ng
th

Intel

TPA-E

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 61

Based on these initial measurements with an entry-level configuration of TPA-E, it seems pre-
liminarily possible that a processor like TPA-E, integrating the low-level architectural tech-
niques listed in D3.1 and VTT’s multiprocessor framework, could make it possible to build net-
worked computing devices providing substantial speedup and giving a substantial software
development productivity boost with respect to industry standard solutions. This would help
to in part achieve the 10x latency improvement and efficiency targets of DEDICAT 6G.

3.3 Orchestration Engine
The orchestration engine will be part of the (Service) Orchestration FC defined in WP2’s ar-
chitecture and will serve as an interface between the Decision-Making FCs and the NFV Or-
chestrator to properly instantiate ad-hoc network slices, thus enabling the provisioning of a
unique 5G/B5G-based virtualized network space to run vertical’s apps under the requested
conditions. Moreover, the orchestrator engine will assist the Decision Making FG in the appli-
cation of the instantiation, scaling, or migration network service/slices orchestration proce-
dures according to the outputs generated by the algorithms in this FG.

To play such role within the DEDICAT6G platform the orchestration engine must receive in-
structions and concrete information coming from several internal FCs and with the external
NFV Orchestrator. The overall functional overview and their interactions are represented in
Figure 34 and summarized as follows:

 CEDM FC: It is the FC responsible to take decisions about coverage extension. Its out-
put will feed the orchestration engine with information about the existing MAPs de-
ployment where the network provisioning is required.

 IDDM FC: The IDDM will send to the orchestration engine some recommendations to
ensure optimality in the management of the computational resources consumed by
the NFV-related intelligence (e.g., VNFs).

 NODM FC: This FC will assist the orchestration engine to properly configure the network
slices by providing network-related information.

 μS/FC Registry FC: It can serve information about the computational requirements of
to either μS or FC when needed.

 μS/FC Repository FC: The orchestration engine can access this repository when infor-
mation about the container/VM images of the FC/μS is required.

 NFV Orchestrator: This external entity is the one responsible to manage the NFV infra-
structure (NFVI) resources to establish network slices. The orchestration engine will
command the NFV-O according to the decisions made within the DEDICAT6G plat-
form.

For the interest of WP3, in this deliverable we will put the light on the parts related to the
orchestration of the intelligence and computational resources in the system to be managed
by the orchestration engine to configure and instantiate network slices, not the networking
and other configuration mechanisms. However, it is worth mentioning that the nature of the
orchestration engine component tackles both WP3 and WP4 domains, thus, some parts in
D3.2 and D4.2 are common in both documents to clearly understand this work in a
standalone way. See D4.2 for more information on the orchestration engine from a NFV per-
spective to complement the vision provided in this deliverable.

Furthermore, it is expected that this orchestrator engine will expand its functionalities to ena-
ble orchestration mechanisms related to the communication with the Edge Orchestrator
(e.g., Kubernetes) in a similar way than with the NFV Orchestrator.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 62

Figure 34. Orchestration engine schema in the DEDICAT6G platform.

3.3.1 Orchestration Engine Design
In this work, we present a cloud-native modular design for the orchestration engine compo-
nent ready to work in a distributed microservice environment. This design is focused to be
implemented in a lightweight and scalable implementation suitable for deployment both in
the cloud and at the edge domains. It is worth mentioning that this design is targeted to
communicate with standards and trending external tools.

The Orchestration Engine is focused on assisting the Decision Making FG to translate and
apply recommendations in the external 5G/B5G system, mainly focused on the NFV side by
means of the NFV-O. Our design (shown in Figure 35) assumes the ETSI Open-Source MANO
(OSM) as NFV Orchestrator. In this iteration, the orchestration engine design comprises 5 main
sub-modules:

 Engine Manager: This module works with all the other components to provide the main
functionalities of the orchestration engine and as a link of the rest of the modules. It is in
charge of managing all internal modules in a coordinated way according to the re-
quests coming from the Decision Making FCs.
 Blueprint/Descriptor creator: This entity is responsible for automatically creating or
modifying descriptors based on incoming requests. A descriptor defines what is under-
stood as a VNF, a network service and a network slice. These templates are based on
the ETSI SOL006 data model [47], which are supported by OSM.
 OSM Client: This component is in charge of implementing OSM Client to be able to
communicate with OSM through the native OSM API. It also implements some new fea-
tures that are not currently available in OSM Client, for instance, post processing mes-
sages received by OSM to extract more valuable and concrete information to manage
the instances which are running.
 gRPC Server: It exports the set of functionalities offered by the orchestration engine to
the rest of FCs in the DEDICAT6G platform. Also, the gRPC-based server to enable rapid

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 63

and efficient communications channels among the different FCs. More information
about gRPC and its benefits for microservice communications in the next subsection.
 Cache DB: This database will store temporal and persistent data, like information
about the network and received messages, necessary for the orchestration engine tasks.

Figure 35. Orchestration Engine design

3.3.2 Experiment Set-up
For the purpose of implementing, testing, and validating the functionalities of the orchestra-
tion engine, details of a preliminary set of experiments aimed at that end are shown here.

 Particular WP3 Goals
As exposed before, the orchestration engine is a component that implements some key
functionalities of the WP2-defined Service Orchestration FC. The main objective of this exper-
iment is to demonstrate the key functionalities of such component within a realistic B5G-
driven environment under the DEDICAT6G umbrella. Despite, the main objective can be
shared between WP3 and WP4, here we have defined a set of WP3-oriented sub-goals to be
shown in this work:

 Demonstrate an agile and efficient microservice-based communication between the
IDDM FC and the orchestration engine.

 Show a preliminary working implementation of some WP3-related FCs suitable to be
potentially extended to the rest of the DEDICAT6G platform.

 Preliminary implementation of the IDDM FC output WP2-defined data model.
 Show the impact of the network slice instantiation in the intelligence distribution and

computational resource consumption in the edge nodes of the system.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 64

 Related Technologies
We now introduce the set of open-source software tools employed to perform the corre-
sponding functions presented in the orchestration engine design chosen to meet the above-
mentioned objectives:

 Docker [48]: Docker is an open-source tool that automates the deployment of appli-

cations running inside software containers, thereby bringing an additional layer of ab-
straction and automation to the virtualisation of applications. It is currently the most
widely used tool in microservices-based deployments. In this work, Docker is used to
create the containers where the different components are implemented and de-
ployed.

 Kubernetes [49]: is an open-source platform for managing container deployment, as
already presented in D3.1. The role of Kubernetes in this implementation is to manage
and host the Docker containers related to the DEDICAT6G FCs and also to host the
OSM instance.

 gRPC [50]: it is a high-performance, lightweight, and RPC-based communication pro-
tocol used in microservices environments and hosted by the Cloud Native Computing
Foundation. A prominent feature of gRPC is that its data is structured using strict and
lightweight rules defined by Protocol Buffers (Protobuf [51]), a framework for serving
structured data. The data in Protobuf, at the same time as in gRPC, is specified and
defined by an Interface Description Language (IDL). It can create language-inde-
pendent interfaces to support communication between servers or clients written in
different languages. The present work generates gRPC libraries to enable the com-
munication among the DEDICAT6G FCs. Additionally, the messages of the DM-related
FCs (outputs) have been implemented by using the data models defined in D2.4.

 SQLite [52]: this lightweight and fast SQL-driven database is the chosen one to repre-
sent the role of the cache DB in the orchestration engine.

 OSM [53]: Open Source MANO is the ETSI-hosted NFV orchestrator fully aligned with
ETSI NFV standards. As explained extensively in D4.1, it is capable of managing and
orchestrating virtualized resources in NFV-based ecosystems to enable the instantia-
tion of 5G/B5G network slices. This is the tool selected for these purposes as NFV-O in
the present work.

 OpenStack [54]: is one of the most popular open-source cloud infrastructures used to
manage and host third-party services in virtual machines, bare metal and containers.
In this implementation, OpenStack plays the role of a Virtual Infrastructure Manger
(VIM) that represents an edge node with the computational resources to host the VMs
of the VNFs in a network instantiation. In our case, we consider two different Open-
Stacks as follows in the next sub-section.

 Implementation Schema
The trial has been carried out on the ATOS Telecommunications test bed, following the im-
plementation scheme described in Figure 36. The testbed features a Kubernetes cluster (K8s)
representing the cloud domain intended to host and control the Docker containers, in this
case the DEDICAT6G FCs and the orchestration engine, all of them written in Python. In ad-
dition, in this same cluster, we have deployed an instance of OSM, playing the role of NFV-
O. Finally, the edge domain is modelled with two Open Stacks (VIM) instances, physically
separated, to consider two different edge nodes. We assume both VIMs as part of the NFV
infrastructure to enable the establishment of multi-site network slices.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 65

Figure 36. Orchestration Engine Implementation Schema

Regarding connectivity among existing entities, we consider two types of communication,
internal to DEDICAT6G and external to the rest of the system. A Docker bridge (a virtual net-
work) has been configured to allow communication within the DEDICAT6G platform. This
bridge is used to enable the establishment of gRPC channels, which is the microservices-
based communication chosen for data exchange between the FCs and the orchestration
engine. In this work, the orchestration engine is considered as the anchor of the DEDICAT6G
platform to link to external entities. In this case, the orchestration engine has an OSM client
to allow leveraging the by-default OSM REST interface. It is noteworthy that this interface is
defined in the ETSI GS NFV-SOL 005 specification [47]. Finally, OSM recognizes the two Open
Stacks as VIMs, and uses the Or-Vi interface for the instantiation of the VNFs in an automatic
manner [Or-Vi].

For the sake of simplicity and to cover the objectives in this work, we have assumed a Net-
work Slice with two network service, one of them with two VNFs and the other with one.

 Workflow
Here, in Figure 37, we present the workflow followed in this work. It is important to clarify that
this experiment starts with the interaction between the IDDM FC and the orchestration en-
gine. Thus, we assume that the IDDM have previously calculated the output. In this work, we
focused on the orchestration engine side, not in the optimization of the intelligence distribu-
tion. Also, due to the relation to coverage extension mechanisms, the parallel interactions
among the orchestration engine and the CEDM and NODM are shown in D4.2. The steps in
this experiment are as follows:

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 66

Figure 37. Sequence Diagram of the workflow

1. The Core of the IDDM FC generates the output by using the structure defined in the
corresponding WP2 data model, and encapsulate this info in the shape required and
sends it to its OE_Client

2. The OE_Client, opens a gRPC channel to send the generated message (IDDM output)
to the Orchestration Engine gRPCServer by using a concrete rpc.

3. Now, the IDDM Output is in the orchestration engine domain, and the gRPC forwards
the message to the EngineManager

4. Then, the EngineManager is in charge of parsing the data and structure it according
to the internal structure of the cacheDB, and store it

5. Once the IDDM data is stored and processed, the EngineManager commands the
DescriptorGenerator to automatically create the corresponding descriptors (VNFDs,
NSDs and NSTD) with the IDDM information in the correct fields according to the ETSI
SOL006 data model.

6. After this stage, the network slice is properly modelled in this set of descriptors are it is
ready to be instantiated. Thus, the EngineManager requests the OSMClient to instan-
tiate the NST (Network Slice Template in ETSI SOL006 terminology).

7. The OSMClient sends a request by using the OSM REST interface to instantiate a net-
work slice based on the descriptor attached in that request.

8. Finally, OSM process this request and orchestrate the instantiation of the network slice
in the VIMs.

9. After a few seconds, the network slice is properly configured and available to be used,
with the VNF associated to the NSs consuming computational resources in each VIM.

3.3.3 Preliminary Results
As can be seen in Figure 38, four different docker containers have been built and instanti-
ated, three that emulate the CEDM, IDDM and NODM FCs, and an additional one that con-
tains the orchestration engine. Each of these containers, have preconfigured ports to enable

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 67

gRPC communication by using the Docker bridge, thus, allowing the transmission and recep-
tion of messages compliant with the data models defined in D2.4.

Figure 38. Snapshot of the Docker environment with all the containers up and running

In this scenario, our main target is to instantiate a network slice, called NST001, which includes
two NSs, the first one called drone_ns, emulating a NS to be instantiated in the drone IT re-
sources, and the latter called car_ns, with a similar meaning. The drone_ns is composed by
one VNF which will be instantiated in the VIM associated to the drone, while the car_ns has
two VNFs which will be instantiated in the VIM corresponding to the car. The first step once
all containers are running, is to start the gRPC server of the orchestration engine, as can be
seen in Figure 39a. Once the gRPC server is ready, the FCs can send all output messages, by
using a specific gRPC Orchestrator Engine client, that will be received and stored by the OE.
In this case, we will focus on the IDDM side, as CEDM and NODM will be further detailed in
D4.2.

The information of such gRPC message, built by the core of the IDDM FC representing its
recommendation after executing concrete algorithms to distribute the intelligence, is re-
ceived by the OE gRPC server and stored in the cacheDB in the orchestration engine as can
be seen in Figure 40. For instance, in this figure it can be appreciated how the IDDM indicates
the OE about how to distribute the intelligence associated to the request “REQ001” between
the edge nodes “EN001” and “EN002”, which means that the intelligence associated to the
network services (VNFs) must be deployed in the edge nodes attached to the Drone VIM
and the Car VIM correspondingly. The Task Class Type 201 indicates that the nature of the
request is for Network Services.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 68

Figure 39. Terminal snapshot with logs messages of the containers corresponding to: a) Orchestrator

Engine; b) IDDM.

Figure 40. Snapshot of the SQLite GUI showing the IDDM information stored

When the OE receives enough information to process the new request, including some infor-
mation sent by CEDM and NODM, the OE starts processing the information to instantiate a
network slice containing the necessary NSs for the drone and the car. These NSs, are associ-
ated with one or several VNF images, also including resource information like RAM, VCPU
and Storage to be consumed by the VNFs. As can be seen in Figure 41, this mapping be-
tween the NSs and VNFs is stored in the cache DB (and managed by the Engine Manger),
this information can be obtained via the μS/FC registry and repository FCs. In our experiment,
this functionality is modelled by the internal registries of OpenStack, as we will see later in this
section.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 69

Figure 41. VNF internal mapping to associated to the NSs in OE cache DB.

Once the information regarding VNFs for every NS is extracted, the next step is to prepare
the necessary descriptors to translate the information received by the FCs, to a Data model
understood by OSM (ETSI SOL006). Three types of descriptors are generated, including VNF
descriptors (VNFD), network service descriptors (NSD) and network slice templates (NST).

Figure 42. Examples of some of the generated descriptors of: a) network slice (NST), b) network ser-

vice (NSD) and c) VNF (VNFD).

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 70

An example of each type of descriptors can be seen in Figure 42, showing the hierarchy of
each one, from the NST relating the NS, to the car VNF specifying the needed image and
computational resources. Focusing on the VNF descriptor, we can see that the resources
requested in the VNF table in Figure 41 the first row are mapped to the corresponding fields
in the descriptor. There we can appreciate corresponding metrics to model the RAM, VCPU,
storage and also the VNF image name is also available, which in this particular case is a very
lightweight version of Linux called cirrOS with some basic functionalities. Furthermore, a con-
figuration file is created to map the multi-site information received by the FCs, making it pos-
sible to instantiate different NS that belongs to the same network slice in different VIMs.

Once the descriptors are generated, they are onboarded into OSM by the OE, after which it
commands OSM to instantiate the required slice. These actions are executed via the OSM
Client implemented in the OE. Figure 43 shows the NST001 network slice successfully running
in OSM. More information about the network slice instance is presented in D4.2.

Figure 43. Snapshot of OSM with the network slice instantiated commanded by the Orchestrator En-

gine

As for the computational resources consumed associated with this network slice instance
(NST001), the key elements are the VNFs, in turn 3 different VNFs, two instantiated in the car
VIM and one in the drone VIM. In Figure 44, the different requirements that were previously
established in Figure 42c, have been successfully captured in the VNF instance.

Figure 44. VNF instance in car VIM (OpenStack) indicating the requirements (RAM, VCPU and Disk).

As can be seen in Figure 45, one VNF instance of cirrOS is running in the (emulated) drone
VIM with IP 192.168.137.101, which represents the drone VIM. For the car NS, two VNFs with

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 71

cirrOS are deployed in the car node, with IP 192.168.137.11, accomplishing the target of a
multi-site network deployment commanded by the DEDICAT6G platform.

Figure 45. Snapshot of the nodes (OpenStack) with the VNFs’ instances up and running

3.3.4 Conclusions
As we have shown in this work, the provision of network slices has an impact on the manage-
ment of the computational resources available in a 5G/B5G system, especially critical in the
edge domain, and in turn, on the distribution of intelligence. Considering this fact, the DEDI-
CAT6G project is working to cover it and provide optimization when needed, precisely the
orchestration engine is the one in charge of such role.

One of the main insights of this orchestration engine is that its cloud-based design and mi-
croservices-based implementation permits its deployment in multiple B5G/6G scenarios
thanks to its potential high availability, scalability and distributed manner. In the future, we
will be able to test these capabilities by extending our work to take on new proof-of-con-
cepts where the orchestration engine can be scaled in/out according to scenario require-
ments, deployed on multiple nodes, and creating multiple replicas to improve its availability
and resilience.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 72

Additionally, it is expected to extend the functionalities offered by the OE to assist the de-
ployment of vertical apps and other FCs instance on edge nodes using the Kubernetes inter-
face and command it, as Edge Orchestrator.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 73

4 Security and Trust
In order to monitor security threats and establish secure and privacy-preserving AI/ML training
and inference, a framework for secure data exchange must be set up. The DEDICAT 6G se-
curity and privacy protection framework is based on a decentralized, blockchain powered
data marketplace for secure, automated monetization, processing and exchange of IoT
sensors and digital assets data with technical and policy-based data verification.

The framework's unique features for monetization and exchange of data between arbitrary
interested parties are:

 Private, permissioned Blockchain technology which provides network security, data in-
tegrity, smart contract for fast automated transactions and micropayments with a token
economy.

 Data verification, technical and policy-based through blockchain Smart Contracts and
data hashing (anchoring).

Data and algorithm providers, as well as data buyers and consumers, can use web or mobile
app clients to communicate with the framework using specified API, while framework com-
ponents communicate internally using internal APIs and/or message brokers. Framework
components include two domains:

 Privacy preserving domain that relies on blockchain
 AI domain that relies on tools for AI workflow management and workflow manage-

ment in general.

All the internal components from both domains – services and its dependencies – are running
in the private network and public entry points to them are strictly controlled by ingress con-
trollers and reverse-proxies

4.1 Access, Authentication, and Authorization Management
Access control, authentication, and authorization is achieved through Security Framework
and Trust Management Platform. Architecture of the solution is explained in D2.4 and, for the
sake of better understanding the complete flow, this document will share some parts with
D2.4. Also, the entire WP5 (all the tasks in it) explains the Platform and provides detailed over-
view of its architecture and implementation, so some content will be shared with D5.1 and
D5.2. We will focus on architecture and deployment and address scalability and integration
with the orchestration engine. Authentication, authorization, and access control will be ad-
dressed in that respective order.

The access control flow is designed in such a way as to provide a scalable solution and quick
and easy integration of new services. There are multiple ways to include access control calls
to the new service. The least intrusive approach that does not require code changes is at the
deployment level. A sidecar container can be deployed alongside the new service that will
intercept all the requests and authorize them. The other option is direct integration with the
Framework. While authentication, authorization, and access control represent different FCs,
implementation-wise only one remote procedure call (RPC) request is necessary for the inte-
gration. Detailed explanation of the flow and architecture can be found in D2.4. The figure
below shows the integration of the new service into the Platform.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 74

Figure 46. Integration of the new service with the existing access control flow

4.1.1 Authentication
Authentication is the process of determining a participant’s identity in the system. The Frame-
work relies on token-based authentication - which means that the client’s identity data is
encoded in the self-contained token that is exchanged with each request. The system's au-
thentication is by its nature stateless - anyone with the correct token can be authenticated
successfully and all the data necessary for the process is encoded in the token. Implemen-
tation-wise, the default token is JSON Web Token (JWT) with a short expiration time. Once
JWT is expired, the refresh token needs to be used to issue a new JWT. Refresh tokens, unlike
access tokens, are stored in the can be revoked. Refresh tokens can be used only once. For
HTTP requests, the token is embedded in the HTTP request headers.

Authentication solution is, however, developed with constrained devices in mind. In some
cases, IoT devices are rather low power and low energy which means that exchanging a
large JWT with each request is simply too heavy for them. Also, in some cases, those devices
do not even use the request-response model of communication, but rather publish-subscribe
or even fire and forget models. The Framework is structured in such a way that it supports
those constrained devices by design. This means that the token type can easily be replaced
with a proprietary, simpler, and less secure token if needed. Currently, there is ongoing work

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 75

in the WP5 on the support for the MQTT protocol which will be using a publish-subscribe model
of communication.

4.1.2 Authorization
Authorization connects access control policies to the identity that is resolved in the authen-
tication process and evaluates those rules against it. There are a couple of simple general
rules in the approach to authentication, authorization, and access control:

 Each interaction with external entities needs to be authorized.
 When assigning access control rules, use the Principle of least privilege (PoLP).
 All the networking, internal and external, needs to be secured via TLS.
 Access control evaluation must be quick.

Since authentication, authorization, and access control are three stages of the single flow
and are by nature inseparable, some of these steps are applicable across all of them.

The first rule imposes that all the interactions, even those that essentially do not require au-
thorization (such as health check endpoints) need to go through the authorization flow. The
reason for this is the simplification of the process and providing necessary logging and future-
proof support. The second rule is enforced by design, but it is really the administrator’s re-
sponsibility to respect it. It means that all the clients have only the minimum privileges neces-
sary to perform the given action. By default, almost all the actions are forbidden, except for
logging in and fetching its own data. The third rule imposes using the active best practices
for network protection of the data in transit - TLS by default and mutual TLS as an even more
secure solution. Mutual TLS is not set by default because the certificate and key distribution
for all the clients is simply not viable for large-scale deployment with general-purpose clients.
The fourth rule is loosely defined on purpose. The exact acceptance criteria have not been
yet developed to strictly define the limits and would be a useful contribution to WP7. The
problem with strict criteria is the versatility of use cases and client types that all have different
tolerance to latency. Experience from Nokia Data Marketplace (NDM) that is used as a ref-
erence when developing the Framework witnesses it should be in the 200ms range. However,
since the Framework includes more machine-to-machine (M2M) communication, some
parts of it can tolerate even greater latency. Others, such as real-time sensor data monitoring
- cannot.

4.1.3 Access control
Access control is based on combined Role-based access control (RBAC) on the higher level
and Attribute-based access control (ABAC) for fine-grained permission tuning. The policy de-
sign and implementation are rather simple, as well as policy evaluation against the given
client for the provided action. Each client has a role assigned to it. The roles define rights for
the client to set up policies for other clients over the resources in the system. Resources are
called digital assets. Assets can be anything from dataset and algorithm to pictures, video,
or NFT – the only requirement is that it has the URI.

The policy consists of rules in the form of Subject-Action-Condition. The subject is the client
attached to the policy, action is one from the list of predefined actions and condition is the
condition under which the policy applies. The simplest condition is represented by simple key-
value pairs where the key is the name of the subject attribute, and the value is the expected
value for that attribute - thus attribute-based access control. The conditions are generic by
design and can incorporate more complex scenarios such as temporal or spatial constraints.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 76

4.1.4 Audit logging and analysis
Logging enables collection and secure storage of all types of logs across the DEDICAT 6G
system (with main focus on security) and implements blockchain technology to ensure logs
consistency and trustworthiness.

Its main functions are:

 Collection of logs (transactions, audit of sessions, reports)
 Storage of trusted logs in a secure manner
 Providing access to logs for authorized clients

Trustworthiness metrics are calculated for edge nodes, processes, users and data streams.
Trust metric value indicates if a node can join a local network, if process output can be further
used, if a user can execute specific rule. Trust metrics are implemented as ML models whose
outputs are written on private permissioned blockchain through dedicated smart contracts.
This way all stakeholders in DEDICAT 6G instance have access to immutable record of trust
metrics calculated for all actors, resources and processes.

Figure 47. Logging data process on edge device

The algorithms used for logged data analysis in our test lab environment are Decision tree
and Random forest. Each of these algorithms is tried for two types of problems: for regression
and for classification. In the case of classification, there are two classes: “Trust” and “Don’t
trust”. Trust values above 0.5 are considered to belong to the “Trust” class and are assigned

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 77

a value of 1, and values below or equal to 0.5 are considered as members of the “Don’t
trust” class and are assigned a value of 0.

4.2 Network and data security, Cryptography, and key man-
agement

While the privacy and protection framework that is under construction in WP5 is mostly fo-
cused on innovative approaches of a combination of trust management using blockchain
technologies and extensible fine-grained access control, it is also using the best practices
when it comes to securing data in transit. As has already been mentioned, all communica-
tion between all the services is secured using TLS. Also, the Platform is extensible for supporting
mutual TLS. Problems with certificate distribution, key rotation, and device secure bootstrap-
ping are not addressed yet. The other preferred practices for securing sensitive data are im-
plemented some of them being hash and salt for users’ passwords, account lock on subse-
quent unsuccessful login attempts, short-lived access tokens signed with cryptographically
strong algorithm and key, and load balancer set up to prevent distributed denial-of-service
(DDoS) attacks… Fine-tuning of the load balancer and REST API is done by security experts
to improve safety and lower the risks of exploiting any sensitive information. Also, logging and
collecting sensitive user data is prevented by using only internal unique user identifiers in logs,
rather than sensitive information such as the user’s email address.

All these measures, alongside the aforementioned approach to access control and integra-
tion with blockchain for trust support provide a very robust, yet scalable and reliable security
framework that is easy to integrate, monitor, and use.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 78

5 Conclusions
The DEDICAT 6G project has defined a set of global objectives, among which:

 To provide imperceptible end-to-end latency and response time, with a minimal en-
ergy and resource consumption in B5G networks for the support of innovative appli-
cations

 Reinforce security, privacy and trust in B5G systems in support of advanced IoT appli-
cations

 Develop human-centric applications and showcase novel interaction between hu-
mans and digital systems

These three objectives are at the core of the work performed in WP3. These objectives can
only be achieved by combining both computation and communications capabilities of the
whole network: core, edge, access, and even terminals. However, in 5G, it is lacking a unified
platform that can leverage infrastructure programmability and AI techniques to meet the
most stringent requirements of services.

This document has presented the work achieved so far in WP3. First, a description of several
algorithms for Distribution of Intelligence was given, along with experimental results that were
collected. Next, a detailed description of low-level architectural techniques was given, as
well as the design of the orchestration engine. Finally, an overview of the security issues and
how they are tackled is given.

In the next work period, the work will be refined and implemented in Proof-of-Concept pro-
totypes. In addition, the work on architectural techniques will be continued, expanded to
machine, cloudlet and edge region levels, and implemented in a prototype. These proto-
types will then later on be integrated in the pilots defined in WP6.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 79

References
[1] DEDICAT 6G Deliverable D2.2. Initial System Architecture, Editor F. Carrez, 2021.
[2] Alharbe, N.; Aljohani, A.; Rakrouki, M.A. A Fuzzy Grouping Genetic Algorithm for Solving

a Real-World Virtual Machine Placement Problem in a Healthcare-Cloud. Algorithms
2022, 15, 128. https://doi.org/10.3390/a15040128

[3] Canali, Claudia & Lancellotti, Riccardo. (2019). GASP: Genetic Algorithms for Service
Placement in Fog Computing Systems. Algorithms. 12. 201. 10.3390/a12100201.

[4] Lu, J.; Zhao, W.; Zhu, H.; Li, J.; Cheng, Z.; Xiao, G. Optimal machine placement based on
improved genetic algorithm in cloud computing. J. Supercomput. 2022, 78, 3448–3476.

[5] Abdoun O, Jaafar A, Chakir T (2012) Analyzing the performance of mutation operators
to solve the travelling salesman problem. Neural Evolut Comput Int J Emerg Sci 2(1):61–
77

[6] DEDICAT 6G D3.1.First Release of Mechanisms for Dynamic Distribution of Intelligence,
Deliverable D3.1, 2021

[7] Mitchell S, O’Sullivan M, Dunning (2011) Pulp: A linear programming toolkit for py-
thon. Accessed May 1, 2013, https://code.google.com/p/pulp-or/

[8] Kaidi Yang, S.Ilgin Guler, and Monica Menendes, Isolated intersection control for various
levels of vehicle technology: Conventional, connected, and automated vehicles, Trans-
portation Research Part C: Emerging Technologies, Vol. 72, November 2016, Pages109-
129.

[9] Xiangdong Xu, Hong K. Lo, Anthony Chen, and Enrique Castillo, Robust network sensor
location for complete link flow observability under uncertainty, Transportation Research
Part B: Methodological, Vol. 88, June 2016, Pages1-20.

[10] Yunyi Liang, Zhizhou Wu, and Jia Hu, Road side unit location optimization for optimum
link flow determination, Computer-Aided Civil and Infrastructure Engineering, Volume 35,
Issue 1, January 2020, Pages 61-79

[11] http://www.pyomo.org
[12] https://coin-or.github.io/pulp/
[13] Z. Ma, "The Generalized Quadratic Assignment Problem," 2004.
[14] R. Kasimbeyli, "Comparison of Some Scalarization Methods in Multiobjective Optimiza-

tion," in Bulletin of the Malaysian Mathematical Sciences Society, 2019.
[15] Z. Tang, "Migration Modeling and Learning Algorithms for Containers in Fog Compu-

ting," in IEEE Transactions on Services Computing, 2019.
[16] H. Mossalam, "Mult-Objective Deep Reinforcement Learning," 2016.
[17] A. Abels, "Dynamic Weights in Multi-Objective Reinforcement Learning," 2017.
[18] R. Eyckerman, "Evaluation of Objective Function Descriptions and Optimization Meth-

odologies for Task Allocation in a Dynamic Fog Environment," in IOTSMS, 2020.
[19] D. Balemans, "Resource Efficient Sensor Fusion by Knowledge-Based Network Pruning,"

in Internet of Things (Netherlands, 2020.
[20] S. Rangan, "Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges,"

IEEE, vol. 102, no. 3, pp. 366-385, 2014.
[21] NGMN, "5G White Paper".
[22] I. Qualcomm Technologies, "VR and AR pushing connectivity limits," 2017.
[23] Qualcomm, "Making Immersive Virtual Reality Possible in Mobile," 2016.
[24] METIS, "FP7-ICT-317669-METIS/D1.1".
[25] M. Marjalaakso, "Security Requirements and Constraints of VoIP," Helsinki University of

Technology.
[26] Cisco, "Quality of Service Design Overview," in Cisco Press book End-to-End QoS Net-

work Design: Quality of Service for Rich-Media & Cloud Networks, 2nd Edition , 2014.
[27] 5GPP, "White Paper Phase 1 Security Landscape," 2017.

D3.2 Second release of mechanisms for dynamic distribution of intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 80

[28] 5G-Ensure, "Deliverable D3.6 5G-PPP security enablers open specification," 2017.
[29] B. Sas, "Classifying Users based on their Mobility Behavior in LTE networks," in 10th Int.

Conf. on Wireless and Mob. Comms. (ICWMC), 2014.
[30] J. Hsu, "Mining GPS data for mobility patterns: A survey," in Pervasive and Mobile Com-

puting, 2013.
[31] Boyd et al, Convex Optimization, Cambridge University Press, 2004.
[32] Q. Ye et al., “User association for load balancing in heterogeneous cellular networks,”

IEEE Trans. Wireless Communication, 2013.
[33] S. Aaronson, The Limits of Quantum Computers, Scientific American 298, 3 (March

2008), 62-69.
[34] M. Forsell, Minimal pipeline architecture—an alternative to superscalar architecture,

Microprocess Microsystems 20, 5 (1996), 277–284.
[35] M. Forsell, A Scalable High-Performance Computing Solution for Network on Chips,

IEEE Micro 22, 5 (September- October 2002), 46-55.
[36] M. Forsell, Architectural differences of efficient sequential and parallel computers,

Journal of Systems Architecture 47, 13 (July 2002), 1017-1041.
[37] M. Forsell and V. Leppänen, An Extended PRAM-NUMA Model of Computation for TCF

Programming, International Journal of Networking and Computing 3, 1 (2013), 98-115.
[38] M. Forsell, V. Leppänen and M. Penttonen, Cost of Bandwidth-Optimized Sparse Mesh

Layouts, In the Proceedings of 13th International Conference on Parallel Computing
Technologies (PaCT’15), Lecture Notes in Computer Science (LNCS) 9251, Au-gust 31 -
September 4, 2015, Petrozavodsk, Russia, 375-389.

[39] M. Forsell, J. Roivainen, V. Leppänen, Outline of a thick control flow architecture. In:
Proc. MPP 2016, SBAC-PAD 2016, October 26–28, 2016. Marina del Rey Marriott, Los An-
geles, USA.

[40] M. Forsell, J. Roivainen and V. Leppänen, REPLICA MBTAC - Multithreaded Dual Mode-
Processor, Journal of Supercomputing 74, 5 (2018), 1911-1933.

[41] M. Forsell, REPLICA Multiprocessor Framework, White Paper, VTT, April 2020.
[42] International Technology Roadmap for Semiconductors, Semiconductor Industry As-

sociation, year 2015; http://www.itrs2.net.
[43] J. Keller, C. Keßler, and J. Träff, Practical PRAM Programming, Wiley, New York, 2001.
[44] V. Leppänen, M. Forsell and J-M. Mäkelä, Thick Control Flows: Introduction and Pro-

spects, Proc. 2011 Int. Conf. on Parallel and Distributed Processing Techniques and Ap-
plications, July 18-21, 2011, Las Vegas, USA, 540-546.

[45] A. Mämmelä and A. Anttonen, Why Will Computing Power Need Particular Attention
in Future Wireless Devices?, IEEE Circuits and Systems 17, 1 (2017).

[46] A. Ranade. How to Emulate Shared Memory. Journal of Computer and System Sci-
ences 42, (1991) 307–326.

[47] ETSI GS NFV-SOL 006, “NFV descriptors based on YANG Specification”. Available Online:
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/006/03.06.01_60/gs_nfv-
sol006v030601p.pdf

[48] Docker - https://www.docker.com

[49] Kubernetes - https://kubernetes.io

[50] GRPC - https://grpc.io

[51] Protobuf - https://developers.google.com/protocol-buffers

[52] SQLIte - https://www.sqlite.org

[53] OSM - https://osm.etsi.org/

[54] OpenStack - https://www.openstack.org/

