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Executive Summary 
The envisioned requirements for 6G include, among others, lower environment impact, im-
perceptible end-to-end latency, high resiliency, security and privacy. They can only be 
achieved by combining both computation and communications capabilities of the whole 
network: core, edge, access, and even terminals. However, in 5G, it is lacking a unified plat-
form that can leverage infrastructure programmability and AI techniques to meet the most 
stringent requirements of services. 

The specific goals of WP3 (Mechanisms for supporting dynamic distribution of intelligence) 
include (T3.1) architectural techniques for supporting offloading, migration and distribution 
of computing and communication on processor, storage, and network levels, (T3.2) algo-
rithms for migration and distribution of intelligence, and (T3.3) validation of the mechanisms 
for computation placement optimization also related to the high-level architecture and sce-
narios/use cases defined in WP2 and carried out in WP6, respectively. 

This document is the second instalment of a series of three, describing the achievements in 
WP3. These achievements follow three dimensions: 

Algorithms for Distribution of Intelligence (section 2) 
The project has designed and implemented algorithms for the placement of intelligence (i.e. 
functional entities) while optimizing a set of given KPIs (including end-to-end latency, overall 
energy consumption, throughput, service reliability), in the particular cases of the use-cases 
defined in the project. 

Experimentations were conducted in order to assess the relevance and performance of the 
proposed approaches. The results that were collected are presented in this deliverable. The 
results indicate that significant performance improvements can be achieved, as compared 
to state-of-the-art techniques. 

Low-level Architectural techniques for Distribution of Intelligence (section 3)  
We have studied architectural techniques for context switching, patterns of computation 
and communication, load balancing, movement of threads, reducing the state of compu-
tation, synchronization, programmability and placement of functionality. Early experimenta-
tions were conducted at the processor and server level.  

Security and Trust (section 4) 
The DEDICAT 6G security and privacy protection framework is based on a decentralized, 
blockchain powered data marketplace. It enables secure, automated monetization, pro-
cessing and exchange of IoT sensors and digital assets data with technical and policy-based 
data verification. A description of this framework is given in section 4.  
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1 Introduction 
The 6G network is expected to be deployed in the 2030s. Designing a communication tech-
nology for the 2030s relies on:  

1. understanding future service needs on the 2030 horizon and beyond 
2. investigating techniques improving performance versus the state of the art 
3. combining different techniques to build a mobile communication system that ad-

dresses the identified needs and constraints.  

The first two steps generally feed each other: new service requirements stimulate research 
while increased performance inspires new services.  

The third step will start when there will be a sufficient understanding of the target services and 
technical capabilities to set initial design objectives or requirements. Consensus building will 
culminate with standardization, which will specify service requirements, architectures, inter-
faces, and protocols that should be addressed globally. Indeed, a common global standard 
will be key to enable affordable costs via economies of scale, interoperability and interna-
tional roaming. 

Network virtualization and slicing technologies enable service providers to have access to 
dedicated ISP’s computational, storage, and communication resources. Cellular networks 
will integrate enterprise local networks, which, in turn, has the potential to increase even fur-
ther the number of devices and networks connected to the internet. 

In a Cloud Computing (CC) architecture, this explosion of the number of connected devices 
results in an overload of ISPs and Content Providers’ resources. Consequently, users’ Quality 
of Experience (QoE) may be drastically affected, and more demanding applications and 
services may even become invalidated. It has been extensively discussed in the literature 
that such an increasing demand may be addressed by shifting from the classic CC paradigm 
to the Edge Computing (EC) paradigm. 

EC is a computing and data distribution paradigm in which computation and data storage 
are placed closer to the service end user. In a general EC model (cf. Figure 1), network nodes 
are split into three regions: (i) users (data sources), (ii) edge servers (access points and gate-
ways), and (iii) edge cloud. Any network node of any region can host applications and the 
connection between user and application host is determined accordingly. By doing so, you 
offload the general resources utilization (bandwidth and response times (also call delay) and 
enable a more flexible range of applications. Specifically, because computations can be 
carried out at the edge, closer to where data is produced, response times have potential to 
be drastically reduced, which is particularly relevant to time-sensitive applications. 

EC was introduced in 5G networks, however the control framework in 5G is not mature 
enough to support Intelligence Distribution as defined in the Dedicat-6G project, in Delivera-
ble D3.1. 

The general objective of WP3 is to support dynamic, optimal placement of intelligence 
(data, computation, storage) in heterogeneous B5G/6G networks with respect to Key Perfor-
mance Indicators e.g., service creation time, latency and reliability, overall energy consump-
tion and security.  

The main incentive is to enable reliable service continuity with the target user mobility and 
given network and computation resources for the DEDICAT 6G use cases and system archi-
tecture defined in WP2.  
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Techniques for dynamic distribution of data, computation, and storage in B5G/6G networks 
are developed, and algorithms for the overall optimization task are formulated to support 
extended dynamic coverage (WP4) and services of WP6. Understanding the trade-offs be-
tween computation and communications is essential in the underlying concepts. While the 
developed solutions are initially evaluated and tested in this work package, their practical 
aspects are integrated in the use case pilots in WP6. 

 
Figure 1. Edge Computing paradigm 

1.1 Scope  
The scope of this deliverable is to describe the achievements so far on the Mechanisms for 
Dynamic Distribution of Intelligence. The work described in this document is still in progress as 
the final outcomes of the work will be detailed in the next and last upcoming deliverable. 
This document is the second iteration out of the three planned over a period of 18 months. 

1.2  Document Structure 
The overview of the underlying architecture of the Dedicat-6G system is described in D2.2 
[1], with a focus on the Functional Groups used in WP3 in D3.1 [6]. As a consequence, they 
are not repeated in this deliverable. 

The state-of-art covering Intelligence Distribution Algorithms, technologies and frameworks 
for Distribution of Intelligence in Edge Computing, and orchestration of NFV (Network Func-
tion Virtualization) is provided in D3.1 [6]. 

Section 2 describes the algorithms for Distribution of Intelligence, first in a general case, and 
also in the particular instances of the use-cases defined and implemented in the project.  

Section 3 details a set of low-level architectural techniques for improving the performance 
of Distribution of Intelligence.  

Section 4 deals with security and trust issues. 

Finally, the conclusion (Section 5) summarizes the achievements and describes the next steps 
to be carried out in WP3.  
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2 Algorithms for Distribution of Intelligence   
Algorithms described in this section are designed to be executed in the Intelligence Distribu-
tion Functional Group and serve as a reference for the Context-Aware and Decision-Making 
components. These algorithms are key enablers for the objectives of meeting the specific 
requirements of verticals while lowering energy consumption. 

2.1  Placement of Intelligence 
2.1.1 Introduction 

Intelligence placement (computation and content) intended for B5G/6G networks needs to 
take account of the increasing service requirements as well as the demand of power and 
delay sensitivity of user devices. In this section it is proposed an intelligence functions place-
ment algorithm for dynamically distributing the functionalities to the various network nodes 
as part of intelligence distribution decision-making FC. This algorithm will support these kinds 
of systems by overcoming possible increase of network latency or possible unavailability of 
used edge nodes and more. It is provided a Mixed Integer Programming formulation of the 
problem and the proposed metaheuristic algorithm building upon the Genetic algorithm 
paradigm for solving it. 

2.1.2 Updated Problem Statement/Formulation 
In this subsection an updated formulation of intelligence functions placement problem de-
scribed in [5] is provided. It is assumed a set of � Functional Entities (FEs) � = {��, …, ��, …, ��} 
e.g., tasks, jobs, services with specific CPU requirements, ������, and memory requirements, 
������. The possible communications between FEs are represented by a functional graph 
(Directed Acyclic Graph-DAG), denoted by �� =  (F, K). Each node � corresponds to a FE 
and each edge � connects interacting FEs and it is weighted, ��,��, according to the amount 
of data transferred between FEs �� and ��� (��,�� = 0 when FEs �� and ��� do not interact or 
when � = ��). Additionally, each edge has a maximum acceptable transmission delay, ��,��  
(threshold). 

Moreover, it is assumed a set of � Hosting Entities (HEs) �  = {��, …, ��, …, ��} e.g., edge 
nodes, core nodes, robotic units, end user devices, Virtual Machines, containers, with some 
capabilities. These are the maximum available CPU resources, ������, memory resources, 
������, the battery level �� if applicable and the functionality-wise ��, which is a set that 
consists of FEs that the HE �� can support (�� ⊆ �) e.g., a robotic unit can support object 
recognition if camera is available, but cannot support grasping an object if robotic arm is 
not available. It is also considered a system layout graph �� =  (H, L) consisting of the availa-
ble HEs and the communicational channels L among them. The communicational channel 
between the HEs ��, ���, has a maximum link capacity ����,��. 

The objective is the allocation of FEs to HEs by ensuring efficiency of the system with low 
energy consumption and latency. Let ��, denote the set of FEs that will be assigned to HE ��, 
�� ⊆ �. We are looking for the minimum cost allocation that satisfies a set of performance 
constraints. 

For formulating reasons, we indicate the feasibility of assigning a FE to a HE in terms of func-
tionality-wise, with the use of the constants ��,�, where ��,� = 1, if the HE �� can support the FE 
�� (�� ⊆ ��), and ��,� = 0, otherwise. We assume that all FEs can be assigned to at least one HE 
in terms of functionality-wise (∑ ��,�

�
��� ≥ 1,  ∀  � ∈ {1, … , �}). 
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Furthermore, we introduce the set of decision variables ��, where �� = 1, if �� is utilized (there 
is at least one FE assigned to it), and �� = 0, otherwise. Also, we introduce the set of decision 
variables ��,� to describe the allocation of FEs to HEs. In particular, ��,� = 1, if �� is assigned to 
�� and ��,� = 0, otherwise. Finally, we define the set of decision variables ��,��,�,��, to describe 
the communication among HE. In particular, ��,��,�,�� = 1, if �� and ��� are communicating 
due to communicating FEs �� and ��� assigned to them respectively, and ��,��,�,�� = 0, if �� 
and ��� are not communicating as no communicating FEs have been assigned to them. 

The problem of obtaining �� may be reduced to the following problem where the following 
Objective Function (OF) is minimized: 

min
�,�,�

����ℎ�� �� ��

�

���

���   +   ����ℎ�� ⋅ �������
� − �����

� �
�

���

⋅
∑ ������

�
��� ⋅ ��,�

������
+ �����

� �   + ����ℎ��

⋅ �� � � � ���,��,�,�� ⋅
��,��

����,��
�

�

����,����

�

���

�

����,����

�

���

� 

Subject to: 

∑ ��,�
�
��� = 1 ,  ∀ � = {1, … , �}, each FE can be allocated to only one HE, 

∑ [��,� ∗ ������]�
��� ≤ ������ ��� ∑ [��,� ∗ ������]�

��� ≤ ������  ∀ � = {1, … , �}, the maximum 
available resources of the HEs are respected. 

∑ ��,�
�
���

�
≤ �� , ∀  � = {1, … , �}, all HE that are utilized (�� = 1), have at least one FE assigned on 

them.  

��,� ≤ ��,� , ∀ � = {1, … , �}, � = {1, … , �}, the feasibility of assigning a FE to a HE (��,� = 1) in terms 
of functionality-wise is respected. 

��,��,�,�� ∙
��,��

����,��
≤ ��,�� ,  ∀  �, �� ∈ {1, … ,  �},   �, �� ∈ 1, … , �, where � ≠ ��, � ≠ ��, the maximum transmis-

sion delay among two communicating HEs is respected.  

��,��,�,�� ≥ ��,� + ���,�� − 1 ,  ∀   �, �� ∈ {1, … ,  �},   �, �� ∈ {1, … , �}, where � ≠ ��,  � ≠ ��,  ��,�� ≠ 0, the com-
municating HEs should have communicating FEs assigned to them. 

The first term of the OF denotes the cost related to the battery level (if applicable) of utilized 
HEs. This cost takes higher values when battery is low, and it takes close to zero values when 
it is fully charged or when the HE is not battery-powered. The second term denotes the power 
consumption cost which is modelled as �����

� − �����
� � ⋅ ����� + �����

�  based on [2], where 
����� is the CPU utilization rate on the HE �� and ����

� , �����
�   are the power consumption 

when the HE �� is fully loaded and idle, respectively. Finally, the third term denotes cost 
(transmission delay) imposed by the communication among HEs related to the amount of 
data transferred between FEs ��,�� and maximum capacity link ����,��. Each term is normal-
ized and is weighted depending on the use case. All notations can be found in Table 1. 
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Table 1. Intelligence functions placement notations. 

Notation Definition Notation Definition 

�, �  Total number of FEs 
and HEs respectively 

�� = (�, �) System layout graph with nodes HEs 
and computational channels �  

�,  ��   Indexes of FEs 

 

��,�� Maximum acceptable transmission 
delay between FEs �� and ��� 

�,  ��   Indexes of HEs 

 

����,�� Maximum capacity of the links 
among HEs �� and ��� 

� ={��, …, ��, 
…, ��} 

Set of FEs ����
� , �����

�  Power consumption when HE �� is fully 
loaded and idle, respectively 

� ={��, …, ��, 
…, ��} 

Set of HEs. ��,� Binary constant showing if FE �� can 
be assigned to HE �� in terms of func-
tionality-wise 

������, 

������  

CPU and memory re-
quirements of FE �� 

A={��, …, 
��, …, ��} 

Collection of sets of FEs that will be as-
signed to the HEs 

������, 
������ 

Maximum available 
CPU and memory re-
sources of HE �� 

�� Decision variable that takes 1(0) de-
pending on whether HE �� is (is not) 
utilized 

�� Battery level of HE �� ��,� Decision variable that takes 1(0) de-
pending on whether FE �� is (is not) as-
signed to HE �� 

�� = (�, �) Functional graph with 
nodes FEs and edges 
�  

��,��,�,�� Decision variable that takes 1(0) de-
pending on whether HE �� and ��� are 
(are not) communicating 

��,�� Weights of interacting 
FEs �� and ��� (data 
transferred) 

  

 

2.1.3 Solution Approach 
The above problem was initially solved with the use of a Mixed Integer Programming (MIP) 
python solver called GNU Linear Programming Kit (GLPK) provided by the open-source PuLP 
[7]. MIP solvers are known to provide the optimal solution but are computationally intracta-
ble, especially for large scale experimentation. For this reason, a metaheuristic Genetic al-
gorithm is developed to approximate this solution. There are many studies proposing genetic 
algorithms for service and virtual machine placement problems providing good results 
[2][3][4]. 

In general, when using genetic algorithms to address an optimization problem, it is consid-
ered a population of individuals, known as “chromosomes”, to encode a solution of a prob-
lem each. The chromosome, in turn, is a series of predetermined number of “genes”, and 
each “gene” stands for a parameter that defines the solution for that individual. In our case, 
each “chromosome” is a series of HEs where each one represents the “proposed” HE for 
each FE and the length of each “chromosome” equals to the number of FEs. The algorithm 
firstly generates randomly a population of “chromosomes” and then it is applied a fitness 
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function, which is the objective function, OF, of the optimization problem, to each chromo-
some. Each chromosome has a fitness score calculated from the OF. Over the course of a 
defined number of generations (in our case we use an upper limit of generations having the 
same best fitness score), a population of chromosomes evolves, and some operators (parent 
selection, crossover, mutation) are used to improve the population’s overall fitness.  

Parent selection operator is the process of selecting chromosomes in one generation to pass 
them to the next generation, these chromosomes are known as “parents”. In our case we 
used tournament selection where each “parent” is the fittest out of a predetermined number 
of randomly chosen chromosomes of the population. Crossover operator is used for creating 
two “children” candidate solutions (new solutions) from two “parents”. In our case we select 
a random split point on the chromosome of each “parent”, then we create a “child” with 
the genes up to the split point from the first “parent” and from the split point to the end of 
the chromosome from the second “parent”. This process is then inverted for the second 
“child”. Finally, mutation is a change in a single gene of “child’s” chromosome or in a group 
of genes for exploring new areas of the solution space. In our case we use reverse sequence 
mutation proposed in [5]. We randomly choose two positions in chromosome, and we re-
verse the gene order in the sequence between these positions. Crossover and mutation op-
erators occur with a predefined probability. In our case we used 0.8 crossover and 0.15 mu-
tation rate. Additional steps were introduced related to efficient initialization of chromo-
somes among others and more elaboration will follow. 

2.1.4 Preliminary Results 
In this subsection some initial results of the described model are presented. Figure 2 depicts 
a case of thirteen HEs of which nine are robotic nodes having camera or arm on them, with 
battery level of range 20% - 90%, and the rest are not battery-powered nodes. 

 
Figure 2. Example input to the algorithm: a) the schema on the left presents the HE’s graph with their 

capabilities, b) the schema on the right presents the FE’s graph with their requirements. 



D3.2 Second release of mechanisms for dynamic distribution of intelligence        

 DEDICAT 6G - ICT-52-2020 – G.A:101016499                21 

The levels of available CPUs are {2000, 2600, 3000} MIPS, the levels of available memory are 
{2048, 4096, 8192} MB, the levels of power consumption when fully loaded are {260, 360, 460} 
W and the levels of power consumption when idle are {70, 100, 170} W. The links between HEs 
have maximum capacity 10 or 20 Mbps. Figure 2b shows the nine FEs with their requirements. 
FE1 and FE5 can be placed in a robotic unit with an arm, FE2 and FE8 can be placed in a 
robotic unit with a camera and the rest can be placed anywhere fulfilling the CPU and 
memory requirements of levels {500,750,1500} MIPS and {256,512,2048} MB, respectively, con-
sidering the amount of data transferred 2-10 Mb and the maximum acceptable delay 0.2-
1.4 s between two interacting FEs. In this example/experiment, we used a population of 40 
chromosomes with maximum iterations having the same score (stopping criteria) being 400 
for genetic algorithm. Subsequently, Figure 2 shows the output placement proposed by GLPK 
solver and Genetic Algorithm model. As it is shown Genetic Algorithm has a score (0.316781) 
close to the optimum (0.272781) with one extra HE utilized and similar category of nodes used 
in general. 

 
Figure 3. Output of the example (terminal screenshot and schematical representation): a) on the left 

side it is the GLPK MIP model’s (solver) output, b) on the right side it is the proposed Genetic Algo-
rithm model’s output. 

Furthermore, Figure 3 shows some initial performance testing of Genetic algorithm compared 
to GLPK solver. For these plots we assume a fixed HE-schema, like the one shown in Figure 2a 
with the difference that the first category of HE (robotic units) consists of 36 HEs, the second 
category, consist of 6 HEs and the third category consists of one HE (43 HEs in total). We 
measured the scores and the execution time when increasing the FEs. The population of 
genetic algorithm is 60 for 2-16 FEs and 100 for 16-48 FEs and iteration threshold is set to 50 for 
2 FEs, 100 for 4-20 FEs, 150 for 24-28 FEs and 200 for 32-48 FEs. As it is mentioned MIP solvers are 
computationally intractable in large experimentation, so we added an execution time limit 
of 200 s to MIP solver. As a result, the MIP scores appeared in Figure 4, exceeding 10 FEs, are 
not optimum since there was no time for all calculations to be completed. Additionally, we 
can see that there are not any MIP values for more than 36 FEs because within 200 s, GLPK 
solver could not find a feasible solution. As we can see from those graphs, Genetic algorithm 
has close to optimum scores within significantly less time than MIP model. Additionally, we 
can see that for a small amount of FEs (in this example less than 8 FEs), MIP solver is marginally 
faster than proposed Genetic algorithm, obtaining better scores. Hence, it may be prefera-
ble to use MIP model for small-scale problems and use the proposed Genetic algorithm 
model for large-scale problems. 



D3.2 Second release of mechanisms for dynamic distribution of intelligence        

 DEDICAT 6G - ICT-52-2020 – G.A:101016499                22 

 
Figure 4. Score and time execution measurements of MIP and Genetic Algorithm models with in-

creasing number of FEs. 

2.1.5 Conclusion 
In this subsection, the intelligence functions placement problem for distributing the intelli-
gence/functionality to the various network nodes (edge, core nodes, robotic units etc.) is 
studied, taking into consideration among others the transmission delay and power consump-
tion. It is provided the description and the formulation of the problem along with the descrip-
tion of the MIP and genetic algorithm implemented for approaching this problem. Addition-
ally, preliminary results are provided. In future work, there will follow more evaluations and 
improvements of the proposed algorithm related to stopping criteria, population size, muta-
tion probability, crossover probability and more. 

2.2 Placement of Latency-Sensitive Tasks 
In this Section, we consider the problem of finding the placement of the tasks, along with the 
needed routing between tasks and end-users, in the context of the Smart Warehouse Use-
Case (UC 1). 

2.2.1 Introduction 
The performance of Edge Computing based systems depends on how efficiently the network 
resources are managed. In the Intelligence Distribution (ID) Problem, given a system (and its 
underlying network) with a fixed number of services to be consumed, we wish to (i) assign 
services to network nodes (service placement) and (ii) determine user-host communication 
path (service routing) in order to provide expected QoS to users at a minimum operation 
cost. In this section, we are interested in the ID problem for systems in which services are delay 
sensitive. Thus, in addition to finding an efficient service placement and routing, we want to 
ensure that services experience a tolerable end-to-end (E2E) delay. 

In the context of Industry 4.0, Smart Warehouse applications bring together all the aforemen-
tioned challenges in an effort to promote digitization and automation of industrial processes. 
They have been considered a key use case in most next generation architectures envisioned 
designs, including the DEDICAT 6G project. In this work, we are particularly interested in real-
time human-machine interaction services with strict latency requirements, e.g., automati-
cally guided vehicles, timely computer-aided industrial operations (e.g., assisted with virtual 
and augmented reality technologies), etc. A MEC-powered network design is a key enabler 
of such services through back-end computation offload and opportunistic networking. 

In this section, we approach the ID Problem by finding its optimal exact solution through a 
Branch-and-Cut algorithm. The separation problem is built with valid inequalities based on 
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cover cuts (for capacity constraints). Additionally, we propose a greedy algorithm to effi-
ciently approximate the problem with theoretical performance lower bounds.  

2.2.2 System Model and Assumptions 
Consider a MEC architecture, illustrated in Figure 1. The Devices layer comprises a set U of user 
equipment (UEs), each of which is associated with a single cellular Base Station (BS). Each BS 
is equipped with a MEC host for application-oriented data storage, processing, and routing, 
which we, henceforth, refer to as Points of Connection (PoCs) or “far-edge” hosts. For sim-
plicity, we assume that PoCs are able to perfectly handle all transmissions from and to their 
associated UEs, so that UE-BS communication will be transparent to our model. In the 
transport network, BSs’ traffic often converges at sink nodes/gateways powered with more 
abundant computational resources, which we refer to as “near-edge” MEC hosts. The Edge 
layer is composed of interconnected (e.g., through Mp3 interfaces) far- and near-edge MEC 
hosts, which we also refer to as the Edge network. We represent the set comprising all MEC 
hosts by H. 

In our model, we do not make any distinction between applications and services and refer 
to them simply as tasks. The set of all considered tasks is denoted by T. We assume that each 
MEC host has all tasks implemented a priori. We define this model in the context of the Deci-
sion-Making Functional Component (DMFC), as a centralized intelligence, with access to the 
information related to the entire network’s infrastructure and available resources. The system 
operates periodically such that each period is split into two phases: observation and man-
agement. In the observation phase, UEs exchange their requested tasks’ data and poten-
tially place requests for more tasks, which will be served only in the observation phase of the 
next operation period. For the entire observation phase, UE-BS association remains static, and 
resources are dedicated to their assigned requests. In the management phase, the DMFC 
knows the set of all placed requests R ⊆ U ×T and decides how to manage the network’s 
available resources in order to accommodate all requests. 

In the management phase, depending on the availability of network and computational 
resources, any MEC host may be assigned by the DMFC to handle a request and to provide 
the related task’s data to its UE, becoming the request’s provider. If the closest host to the UE, 
i.e., its associated PoC, is not available, then another MEC host may become the provider. 
In this case, the DMFC must also provide a route, i.e., a sequence of links, connecting the 
request’s provider and its UE. Additionally, the DMFC may also assign different priority levels, 
from a pre-determined set P, in order to force a higher transmission rate in exchange of more 
computational resources utilization. The resources and performance metrics related to the 
described operation are summarized as follows: 
• When a request r ∈ R is assigned to a host h ∈ H at a priority p ∈ P, it consumes a fraction

 of host h’s total available computational resources, Ch. 
• The throughput , i.e., the average achieved data transmission rate, to serve request r’s 

data at priority p must be ensured by the provider host and each other host participating 
in the request’s routing. 

In the design of MEC systems that are able to meet strict latency requirements, we have to 
consider the trade-off between throughput and network latency. We assume error-free 
channels in the network, so the (average) throughput equals the data rate. Achieving higher 
throughput may provide UEs with smoother, uninterrupted experience, so we use it as a 
measure of Quality of Service (QoS). Moreover, we consider the network latency as the end-
to-end delay, i.e., the time to transmit application packets from the UE to the host providing 
the requested task (or vice-versa). We assume that the end-to-end delay consists uniquely of 
queuing delay, which is fundamentally impacted by the total throughput. If, on one hand, 
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we want to provide better QoS, on the other hand, it increases the network latency (queuing 
delay), becoming the bottleneck for timely applications. 

In summary, the DMFC, aware of the request set R, must determine a network setup. We focus 
this Section on techniques to find such a network setup, which consists of: 
(i) Priority assignment: Each request r ∈ R will be assigned a priority p ∈ P. Higher priorities are 

associated to higher throughput and higher computation. We assume that the lowest 
priority is related to the minimum throughput to provide a task correctly. 

(ii) Request allocation: Each request r ∈ R will be provided by an edge host h ∈ H. Hosts may 
have different amounts of available resources, e.g., near-edge hosts usually enjoy more 
computation power than far-edge hosts. 

(iii) Request routing: For each request r ∈ R, if it is provided by a host other than its UE’s PoC, 
then the DMFC must find a route through which task-related data will flow between UE 
and the actual provider. 

We illustrate the operation of the considered system in Figure 5. In this scheme, a set of re-
quests R = {A,B,...,G} is placed by the UEs of PoCs 1 and 2. The DMFC collects the requests and 
try to assign them to the MEC hosts in order to provide UEs with the highest throughput possi-
ble. Consider that Far-Edge hosts can only provide tasks at the lowest priority. Then, the DMFC 
will try to distribute the tasks among the Near-Edge hosts, i.e., hosts 3, 4, and 5. In this example, 
due to computational limitations, Near-Edge hosts can only provide up to 2 tasks at interme-
diate priority and 1 task at high priority. Similarly, latency requirements are only satisfied if arcs 
carry data traffic of up to 2 tasks at intermediate priority and 1 task at high priority. A possible 
assignment is shown in the figure, where tasks are placed on each MEC host and each colour 
is associated to a different priority level. The coloured arrows indicate the tasks’ data route, 
flowing from its provider to the PoC. 

 
Figure 5. Operation Example: UEs place requests for tasks to their neighbouring PoCs, which are, in 

turn, forwarded to the DMFC. To each request, the DMFC assigns a provider host, a priority level, and 
a low-latency route between provider and PoC through the Edge network. 

2.2.3 The Task Distribution Problem 
Considering the system model and assumptions discussed previously, we introduce next the 
Task Distribution (TD) Problem and model it as an Integer Programming (IP) optimization prob-
lem. 
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Table 2. Summary of notations 

 
First, we represent the Edge network as a graph G = (H,A), where the hosts compose the set of 
vertices and we consider a set of arcs A. If there is a communication link between two net-
work hosts, we consider one arc in A in each direction. Note that arcs in G do not indicate 
transmission direction, they rather assist in the route creation process. Then, the route for serv-
ing request r = (u,t) ∈ R may be represented as a path on graph G from the UE to its provider 
host. Since we assumed that UE-BS is transparent to our model, it suffices to build a route from 
the UE’s PoC to the request’s provider. Therefore, from now on, we use index u to indicate 
the UE’s PoC, i.e., u ∈ H is a (far-edge) MEC host. 

In what follows, we introduce the elements of our optimization formulation. 

1) Decision Variables: To each problem component described at the end of Section II, we asso-
ciate a binary variable: 
(i) We model the priority assignment with variable 

  �  ∈  �ℛ � � (1) 

indicating whether priority p ∈ P is assigned to request ) or not (i.e.,  

 
(ii) We model the request allocation with variable 

�  ∈  �ℛ � ℋ (2) 

indicating whether request r ∈ R is provided by node h ∈ H (i.e., yhr = 1) or not (i.e., yhr = 0). 

 
(iii) We model the request routing with variable 

�  ∈  �ℛ � � (3) 

indicating whether request r ∈ R data is forwarded through arc a ∈ A (i.e., ) or not (i.e., 
 



D3.2 Second release of mechanisms for dynamic distribution of intelligence        

 DEDICAT 6G - ICT-52-2020 – G.A:101016499                26 

Structural Constraints: First, to every request r ∈ R, we must assign exactly one priority in P, i.e., 

∑ ��
� 

� ∈ �   =  1,  ∀�  ∈ ℛ                (4) 

Similarly, every request r ∈ R should be provided by one single node, i.e., 

∑ ��
� 

� ∈ ℋ   =  1,  ∀�  ∈ ℛ                (5) 

Now, we define the constraints that will enforce the creation of flows (or paths) over the 
underlying graph G = (H,A) through which every request r ∈ R will be routed. This can be 
achieved by imposing the following set of flow conservation constraints 

∑ ����, ���
�   −  ����, ��

� � 
�� ∈ �  (� ) =   ����(�)  −  ��

�,  ∀�  ∈ ℛ,  ∀ℎ  ∈ ℋ (6) 

where u(r) is the PoC of the UE which placed request r and we define δ(h) ⊆ H as the set of 
neighbors of host h, i.e., host h’s communicating hosts, and 1e indicate whether event e occurs 
(i.e., 1e = 1) or not (i.e., 1e = 0). 

Computational Capacity Constraints: In what follows, we need to guarantee that a target setup 
can be implemented considering the available computational resources. We ensure that 
the computational utilization of each host meets its RAM/CPU capacity with 

∑ ∑ ��
� 

� ∈ �
 
� ∈ ℛ   ��

� ��
�  ≤   �� ,  ∀ℎ  ∈ ℋ                                          (7) 

 

Where  is the computational demand to provide the task associated to request r at 
priority p and Ch ∈ R+ is the total computational resources available at node h. 

Latency Requirements Constraints: We model the latency requirements by imposing the following 
constraints 

∑ ����∑ ∑ ��
�� 

� ∈ �
 
�� ∈ ℛ   ��

�� ��
�� �  +  ��� 

� ∈ �  ��
�  ≤   �� ,  ∀�  ∈ ℛ  (8) 

 

Where  is the achieved throughput for request r at priority p and request r has toler-
ance Lr ∈ R+. We define the arc’s traffic load as the total throughput achieved by all requests 
being routed through a. We approximate the network latency (i.e., the queuing delay) of a 
request r by a linear function of the traffic load on the links routing it, such that αa and βa are 
the line coefficients for arc a.1 In summary, latency is impacted by two factors: 
1) The number of links forwarding the request’s data. 
2) The total traffic load at those links, i.e., total throughput of all requests traversing each 

link. 

Objective Function: Our goal is to maximize the QoS, which is simply the total throughput 
achieved in a given setup to serve all considered requests, i.e., 

 

 
1 The system is stable if the total throughput over every link is bounded by the link’s capacity [26]. We assume that all links have enough capacity to 

accommodate the maximum priority throughput. 



D3.2 Second release of mechanisms for dynamic distribution of intelligence        

 DEDICAT 6G - ICT-52-2020 – G.A:101016499                27 

 QOS(�)  ≜   ∑ ∑ ��
� 

� ∈�
 
� ∈ℛ  ��

�  (9)  

Definition 1. The Task Distribution (TD) Problem aims at finding a valid network setup, i.e., an 
assignment of x,y,z that satisfies constraints (1)-(8), that maximizes the objective function (9). 
In other words, the TD Problem is to solve the following optimization problem: 

Problem 1 (Task Distribution (TD) Problem). 

 

Proposition 1. Problem 1 is NP-Hard. 

Proof. Consider the following special instance of Problem 1: Each request has sufficiently 
large latency tolerance so that all requests may share its route’s arcs at the highest achiev-
able throughput, i.e., 

�� ≥ � ��

 

� ∈�

 |ℛ| ����  +  �� ,  ∀�  ∈ ℛ 

Where . Notice that latency constraints can be relaxed and the 
DMFC is free to choose whatever route it judges to be convenient for each request. The 
DMFC still needs to assign each request to a host satisfying their computational capacity. 
Therefore, in this setup, the TD Problem can be translated to the classic Multiple Knapsack 
(MK) Problem, which is proven to be NP-Hard [28]. By reducing the MK Problem to this in-
stance of the TD Problem, we show that, even in such a simple case, the TD Problem is NP-
Hard. Therefore, the TD Problem is NP-Hard, so general instances cannot be solved in polyno-
mial time, unless P = NP.  

Even though Problem 1 is NP-Hard, it can be linearized in order to be addressed via traditional 
IP solving techniques. This can be achieved by introducing auxiliary variables capturing the 
product of Problem 1’s main variables. 

Computational Capacity Constraints: We consider a first set of auxiliary variables 

�  ∈ �ℛ � ℋ � � (10) 

such that computational capacity constraints (7) are written as 

∑ ∑ ��
� 

� ∈�
 
� ∈ℛ  ��, �

�   ≤ �� ,  ∀ℎ  ∈ ℋ (11) 

 

where . We ensure that auxiliary variables u are coherently as-
sociated to the main variables x,y by enforcing the following set of constraints  

��, �
�   ≤  ��

�  ,  ∀�  ∈ ℛ,  ∀ℎ  ∈  ℋ,  ∀�  ∈  � 

��, �
�   ≤  ��

�  ,  ∀�  ∈ ℛ,  ∀ℎ  ∈  ℋ,  ∀�  ∈  � 

��, �
�   ≥  ��

�  +  ��
�  − 1  ,  ∀�  ∈ ℛ,  ∀ℎ  ∈  ℋ,  ∀�  ∈  �  (12) 
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Latency Requirements Constraints: We consider a second set of auxiliary variables 

�  ∈  �ℛ � ℛ � � � � (13) 

such that latency requirement constraints are written as 

 ,∑ ��
 
� ∈�   �∑ ∑ ��

�� 
� ∈�

 
�� ∈ℛ  ��, �

�, ��
�   +  �� ��

�  ≤ ��  ,  ∀�  ∈  ℛ      (14) 

where . We ensure that auxiliary variables v are coher-
ently associated to the main variables x,z by enforcing the following set of 

constraints  
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��, �
�, ��

  ≤  ��
�  ,  ∀�,  ��  ∈  ℛ,  ∀�  ∈  �,  ∀�  ∈  � 

��, �
�, ��

  ≥  ��
�� +  ��

��  + ��
�  − 2 ,  ∀�,  ��  ∈  ℛ,  ∀�  ∈  �,  ∀�  ∈  �    (15) 

The final formulation resulting from the linearization of Problem 1 is provided in Problem 2. 

Problem 2 (Linear TD (LinTD) Problem). (LinTD)  

 

Remark 1. We note that we can provide an upper bound to Problem 1 if we solve the contin-
uous relaxation of its linear version, i.e., relaxing the integrality of variables x,y,z. Then, Problem 
1 can be translated to a Linear Programming (LP) problem, which can be efficiently solved 
in practice. Nevertheless, it is important to emphasize that Problem 2’s size grows quickly, as 
each new auxiliary variable introduces at least three new constraints. 

2.2.4 Approximating the TD Problem 
In this section, we discuss an approximation of Problem 1 based on Decomposition. In the De-
composition technique, we tackle the original problem using a two-stage approach. In the 
first stage, we solve an auxiliary problem which is simpler and captures only part of the original 
problem’s constraints. The solution of the auxiliary problem is somehow used as an input to 
the master problem at the second stage. With the relaxed constraints related to the auxiliary 
problem, the master problem will find the best solution that suits its input. 

In order to discuss how we can apply the decomposition technique to solve Problem 1, we 
need to introduce some additional notation. First, we define a flow fs,d = {(s,h),...,(h′,d)} simply as 
a path on G, i.e., a sequence of arcs from a source node s ∈ H to a destination node d ∈ H. 
Since multiple flows may exist connecting a pair of nodes s,d on G, we denote by Fs,d > 0 the 
total number of (s,d) flows. We denote the set of all flows in a graph G as 

ℱ  ≜  ���, �(�) :  �  =  1,   … ,  ��, �,  ∀�,  �  ∈  ℋ �  (16)  
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where k is a unique index for each (s,d) flow. If s = d, then we consider that Fs,d = 1 and fs,d(1) = 

∅. 

 The Flow Formulation – Master Problem 
Given that the set of flows F was obtained in advance, we propose to reformulate Problem 
1 in terms of flows. Roughly speaking, the DMFC’s resource management can be reduced to 
assigning flows to requests. Then, we integrate all problem’s components into the following 
decision variables 

�  ∈  �ℛ � ℱ � � (17) 

indicating whether request r’s data is routed using flow f ∈ F at priority ) or not (i.e.,
). Note that, when selecting a flow for a request, we are implicitly selecting (i) the pro-

vider host and (ii) the sequence of arcs in G through which request’s data is sent. 

We enforce that a single flow, whose source node is the request’s PoC, is assigned to each 
request at exactly one priority by imposing constraints 

∑ ∑ ��(�)��(�)
 
� ∈ �

 
� ∈ ℱ  ��, �

�   =  1  ,  ∀�  ∈  ℛ              (18) 

where s(f) denotes the source node of flow f. The computational capacity constraints can 
be translated to 

∑ ∑ ��(�)��
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� ��, �
�   ≤  ��  ,  ∀ℎ  ∈  ℋ     (19) 

where d(f) denotes the destination node of flow f. 

Similarly, the latency requirements constraints are redefined as follows 
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Finally, the objective function is 

QOSℱ(�)  ≜   ∑ ∑ ∑ ��
� 

� ∈ �
 
� ∈ ℱ

 
� ∈ ℛ  ��, �

�  (21) 

We formulate the TD Problem in terms of flows as follows: 

Problem 3 (Flow-Based TD (FTD) Problem). 

 

Proposition 2. If F contains all possible flows on graph G, then problems 1 and 3 are equiva-
lent, i.e., if (x∗,y∗,z∗) and λ∗ are their respective optimal solutions, then 

���(� ∗) = ���ℱ(� ∗) 

The intuition behind Proposition 2 is that every flow in F satisfies the flow conservation con-
straints (6). Therefore, by building a solution for Problem 3 we are implicitly finding a valid 
assignment for variables z from the original formulation.  
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Proposition 3. Problem 3 is NP-Hard. 

The proof of Proposition 3 follows the same lines as the proof for Proposition 1. We consider a 
setup for Problem 3 with sufficiently large latency requirements and note that the MK Problem 
can be reduced to such a particular instance. Therefore, Problem 3 is NP-Hard. 

Remark 2. Even though Problem 3 can be linearized (similarly to what was done for Problem 
1), the size of set F grows rapidly with the size of the network G, which may easily lead to a 
computationally intractable problem size. However, we remark that the structure of Problem 
3 suits the Column Generation framework, which may be able to find good approximations 
in practice. 

We discuss next how to further exploit the flow formulation to approximate the TD Problem. 

 Shortest-Flow Approximation 
The main idea of the Shortest-Flow Approximation (SFA) is to consider that the optimal solution 
of the TD Problem is primarily built upon shortest flows. This is reasonable because the number 
of links routing a task’s data is the first factor that impacts the latency (recall the discussion 
on Latency Constraints in Section III). 

For a given network G, we define the set of shortest flows from source node s to destination 
node d as follows 

�ℱ�, �  ≜  ���, �  ∈  ℱ :  ∀��, �
�   ∈  ℱ,  ���, ��  ≤  ���, �

� ��  (22) 

where |f| is the size of set f, i.e., the number of arcs in flow f. Additionally, we consider that the 
set of shortest flows can be limited to a maximum number K ≥ 1 of equivalent flows between 
every pair of source-destination nodes. We define the set of K-shortest flows between nodes 
s,d as SFKs,d. Notice that, because a pair of source-destination nodes may have a number of 
shortest flows smaller than K, then |SFKs,d| = min(K,|SFs,d|). Finally, we denote the set of the K-
shortest flows for all pairs of nodes in G as 

�ℱ�  ≜  ��ℱ�, �
�  :  ∀(�,  �)  ∈  ℋ � 

In SFA, we build and solve Problem 3 using the set SFK of K-shortest flows instead of the entire 
set of flows F. 

Remark 3. There are two immediate consequences of applying SFA: (i) Set SFK can be effi-
ciently obtained, e.g., via Dijkstra algorithm [30] and (ii) we consider a significantly smaller 
problem. However, by limiting set F, we provide the solver with less flows to integrate solution 
candidates, which often results in sub-optimal solutions. In summary, if λ∗ and λ∗SFA are the op-
timal solutions of Problem 3 considering the entire set of flows F and considering set SFK of the 
K-shortest flows, respectively, then, 

QOSF(λ∗) ≥ QOS . 

Henceforth, we refer to SFA limited by the K-shortest flows as K-SFA. The K-SFA’s ability to 
achieve solutions close to the optimal (considering all flows) depends primarily on two fac-
tors, which we discuss next. 

1) Selecting K: The larger is K, the better may be the approximation. For large enough val-
ues of K, the closer set SFK gets to SF, which provides the maximum number of shortest-flow 
candidates and, in turn, the best approximate solution. However, it is still not guaranteed that 
the real optimal solution can be achieved, given that optimal flows are not necessarily the 
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shortest ones (i.e., optimal flows may reside within F \ SF). Moreover, the optimization prob-
lem’s size grows rapidly with K. Therefore, we must find the sweet spot in this trade-off for K, in 
order to obtain satisfactory approximations from computationally treatable optimization 
problems. 

2) Selecting the K-shortest flows: In the case where |SFs,d| > K, the strategy used to choose the 
K shortest flows among this subset to constitute set SFK may also impact the quality of K-SFA’s 
solution. If, in a given set SFK, flows tend to overshare the same arc, then sub-optimal assign-
ments will integrate the solution in order not to violate the latency requirement constraints.  

3) The idea is that we must choose the K-shortest flows that provide the largest number 
of feasible assignment candidates possible, in order to reduce the optimality gap (i.e. the 
relative distance to the optimal). Inspired by [31], we capture the notion of potential traffic 
load of a given arc by using its edge-betweenness centrality. In short, the edge-betweenness 
of a link a is the fraction of shortest flows traversing it. We propose to rank flow f’s “idleness” 
level according to the following metric 
  �(�)  ≜    ∑ �1  −   �

|�ℱ|
  ∑ �� ∈�� 

� ∈�ℱ � 
� ∈�   (23) 

As the total traffic load traversing each arc is the second factor impacting latency, choosing 
the K-shortest most-idle flows provides a space of solution candidates with higher degree of 
freedom, potentially reducing the optimality gap. 

 

 
Figure 6. Experimental network topology consisting of 100 nodes: 70 UEs, 10 Far-edge nodes (PoCs) 

and 20 Near-edge hosts. 

2.2.5 Experimental Results   
In this section, we study the performance of K-SFA for specific values of K and how the selec-
tion strategy based on edge-betweenness may affect the quality of the approximation. In 
our experiments, we consider the Berlin topology: a cellular network consisting of 10 PoCs 
located according to the positions of T-Mobile BSs in Berlin extracted from [33]. Moreover, we 
consider that the PoCs communicate to a randomly generated (connected) network of 20 
near-edge hosts. There is a set of 70 UEs, each of which randomly connected to a PoC. We 
plot in Figure 3 the network topology used in our experiments. 

We consider that values of computational utilization and throughput only depends on the 
priority, i.e.,  
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R,∀p ∈ P and . There are 3 priorities, such that, ∀r ∈ R, computational 
demands are  GB,  GB, and  GB, and the throughput levels are

 Mbps, Tdr = 20.0 Mbps, and  Mbps. Far- and Near-edge hosts have Ch =32.0 GB 
and Ch = 64.0 GB of RAM, respectively. Requests’ UEs are chosen uniformly at random, and 
their related latency is also uniformly selected from the interval [50.0,150.0] ms. All these values 
are consistent with the literature (e.g., [15]). For each arc in the network, the latency model 
parameters are randomly chosen from a fixed interval. Specifically, ∀a ∈ A, 

 

 
Figure 7. Upper bound gaps relative to (i) lower bound, (ii) K-SFA (Betweenness), (iii) K-SFA (Ran-

dom), versus the maximum number of flows K. 

Table 3. Experimental Parameters 

Computational Capacity Far-Edge Hosts Near-Edge Hosts 
Ch = 32.0 GB Ch = 64.0 GB 

Latency Tolerance Lr ∼ UNIFORM[50.0,150.0] ms 
Priorities Attributes p = 1 p = 2 p = 3 

Tp = 10.0 Mbps Tp = 20.0 
Mbps 

Tp = 30.0 
Mbps 

Dp = 1.0 GB Dp = 2.0 
GB 

Dp = 4.0 
GB 

Arcs’ Latency Parameters αa ∼ UNI-
FORM[0.0,5.0] 

βa ∼ UNI-
FORM[0.0,200.0] 

 

αa is chosen from interval [0.0,5.0] and βa is selected within [0.0,200.0]. We summarize the pa-
rameters in Table 2. 

Given the described experimental setup, we generate the request set such that PoCs can 
provide all their UEs’ requests at the lowest priority possible. This guarantees that the optimi-
zation problem always has a feasible solution, which we refer to as the trivial solution. We 
propose to compare the approximation of K-SFA with different values of K and with diverse 
selection strategies. We also define the lower bound (LB) as the trivial solution where all re-
quests are deployed at the UEs’ PoCs at the lowest priority. We compare K-SFA and LB with 
Problem 2’s upper bound (UB), i.e., the solution of its continuous relaxation. 
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Figure 8. Upper bound gaps relative to (i) lower bound, (ii) K-SFA (Betweenness), (iii) K-SFA (Ran-

dom), versus the total number of requests |R|. 

In our first set of experiments, we propose to observe the impact of K and the different shortest 
flows selection strategies for a set of 150 requests. For each K ∈ {1,...,10}, we solve2an instance 
of Problem 3 with a set of K-shortest flows filtered (i) uniformly at random, , and (ii) using 
betweenness strategy, SFKB . For each K, we generate 30 problem instances with randomly cho-
sen FK,R and average their relative UB gaps. Finally, we calculate the relative UB gap for the 
betweenness strategy. We show the first experimental results in Figure 8. 

Table 4. Run time for different solution approaches. 

 Origi-
nal 
For-

mula-
tion 

 K-Shortest Flow Approximation 

K=2 K=4 K=6 K=8 K=10 

Auxiliary 
Problem 
Time 

- 
912 1122 1507 2355 2880 

Main/Mas-
ter 
Problem 
Time 

- 

18352 38355 67355 80561 110803 

Total 
Solution 
Time 

7458 
19264 39477 68862 82916 113683 

We first note that the performance gap between random and betweenness (of around 27%) 
has its largest value when K = 1. At this point, both approximations have large UB gaps and 
as K increases, (i) K-SFA tends to provide better results (i.e., closer to the UB), in general, until 
it reaches a convergence point at K = 8, and (ii) the performance gap between random and 
betweenness decreases. Notice that KSFA (regardless of the selection strategy) may achieve 
results up to 10% far from the problem’s UB for when K = 10. At this point, the selection strategy 
has little impact because, for K = 10 in this network, we are considering almost all shortest 
flows. This hypothesis is also supported by the fact that the standard deviation for the random 

 

 
2 The optimization model was developed with PyOMO and solved using IBM CPLEX solver. 
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selection is close to zero for K > 5. These facts altogether corroborate our conclusion that the 
approximation provided by K-SFA is at most 10% from the optimal solution in this setup. This 
means that the optimal solution is composed of some non-shortest flows. 

We show on Table 4 the completion time, in seconds, for different stages of our solutions. In 
general, the auxiliary problem’s solution time is considerably smaller than the master prob-
lem’s solution time. As we briefly mentioned in Section IV, the shortest paths can be efficiently 
obtained. The largest overhead is due to betweenness calculation time, which is still a negli-
gible increase in comparison with the master problem solution time. Experiments were run on 
a computer with an Intel(R) Xeon(R) CPU E5-2650 v2 running at 2.60 GHz using 256 GB of RAM 
and Linux Debian 6.3.0 operating system. 

In our second set of experiments, we fix K = 2 for K-SFA and solve the problem for requests sets 
of different sizes. Once again, we plot K-SFA’s (both Betweenness and Random) and LB’s gap 
relative to the problem’s UB. We observe that, for |R| = 10, the network can accommodate 
almost all the request at the highest priority and K-SFA was capable of approximating this 
solution. As we increase the number of requests, the larger is the gap with the UB. This trend 
can be explained by the fact that having to handle more requests require more complex 
solutions not only based on shortest paths. In other words, having less busy shortest flows im-
proves the result (Betweenness is still performing better than Random), but it gets a less signif-
icant advantage, given that non-shortest flows are more present in the solution as the prob-
lem grows in complexity (with more requests to handle). Interestingly, after reaching its peak 
at |R| = 160, the curves tend to decrease and to get close to each other. We assign this trend 
to the increasing excess of requests (i.e., those which cannot be accommodated in the net-
work at all), which end up having trivial assignments (PoC with smallest priority). This excess 
tends to dominate the portion of requests that are optimally assigned as |R| grows large, 
which, in turn, makes the relative UB gap reduce. 

2.2.6 Conclusions 
The TD Problem captures fundamentally the primary requirements of latency-sensitive sys-
tems based on MEC architectures. In this work, we propose a linear integer programming 
model for the TD Problem. We model requests’ latency as the classic queuing delay and 
approximate it as a linear function of the total achieved throughput in the participating com-
munication links. We approach the problem using the K-SFA and we introduce a shortest flow 
selection strategy based on edge-betweenness centrality. In our experiments, we could ob-
serve our technique’s performance and conclude that K-SFA can achieve satisfactory results 
even for relatively small values of K. The results presented in this Section will pave the way to 
more sophisticated modelling and more efficient approximations, for example, considering 
randomized rounding algorithms [36] and other shortest path selection strategies. Further-
more, the framework can be expanded to consider a mathematical modelling for the robust 
optimization of the expected QoS under random requests and accounting for uncertainties, 
such as chaotic deployment and volatile, mobile UE association. In this scope, we can even 
use the resulting stochastic model as a comparison baseline for Realtime problems based on 
dynamic and distributed policies. 

 

2.3 Link Optimization in Smart Highway 
2.3.1 Introduction 

This section addresses the problem of optimizing the location of the Road Side Unit (RSU) for 
determining optimal link flow which is used to determine the minimum set of links that is 
equipped with traffic monitoring devices to identify vehicle paths in a connected vehicles 
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environment. Network connectivity for RSU deployment focuses on reducing link flow con-
nection efficiency and disconnection interval between RSUs and connected vehicles, and 
there are observable and non-observable links in RSU. 

In V2X, RSU plays a significant role in not only detecting VRUs on the road from mounted 
sensors (e.g., camera), but also exchanging data for VRUs detected through wireless com-
munication, relaying messages between VRUs, and integrating information. Advanced sen-
sor technology attached to the vehicle can collect information about the vehicle's speed, 
location on the road, and VRUs detected around the vehicle. The vehicle periodically ex-
changes this information with connected vehicles and RSUs installed on the road through 
wireless communication. 

RSU can also collect information about traffic-based infrastructure (e.g., traffic lights), and 
the collected infrastructure information is transmitted to nearby connected vehicles and traf-
fic control integration centers. Based on the information collected by RSU, integrated traffic 
guidance and control is possible to optimize traffic conditions. Therefore, it is important not 
only to detect VRUs on the road, but also to optimize RSU location for smooth link flow with 
surrounding VRUs. 

2.3.2 Problem Formulation 
The RSUs can observe the position and velocity of the connected vehicle. As shown in Figure 
9, RSUs obtain traffic counts from multiple links via V2X, each RSU can simultaneously collect 
information for multiple links via V2V communication. 

 
Figure 9. RSUs obtain traffic counts from multiple links via V2V 

From the RSU point of view, the flow of a link is an observed flow of a link and a flow of an 
unobserved link. The flow of an observed link can be estimated using shock wave theory and 
a car-following model at that link [8]. And the flow of the unobserved link is to be inferred 
using the node link flow conservation equation based on the observed link flow. 

Communication delay is a major cause of measurement error related to data collected by 
the RSU, so measurement error is defined as communication delay related to the observed 
link flow. The communication delay is assumed to be the sum of the propagation delay and 
the data packet queuing delay during V2X communication, and the data packet queuing 
delay is the amount of time the RSU waits for a data packet sent by the connected vehicle 
to be executed. 
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It is to define the RSU location formulation model to achieve link flow determination. It is as-
sumed that RSUs should only be located on nodes in the transportation network. 

The decision variables ���,�� are binary variables. If the RSU is located at node � ∈ � , then �� = 1. 
Otherwise, �� = 0, where � is index for links in a transportation network,  �   is index for nodes in a trans-
portation network, �  is set of nodes in a transportation network, and �� is also binary variable. If link 
� ∈ �   is allocated to the RSU located at node� ∈ �  , then ��� = 0. Otherwise, ��� = 1 where �  is set 
of links in a transportation network. 
The objective function [9][10] aims to minimize the total measurement error associated with observed 
link flows and unobserved link 

minimize �(�, �) = min (��(�, �) + ��(�, �)) 

��(�, �) and ��(�, �) are defined as:  
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��

+ � � ������
��

1 − ���
�

2
∙

� ∑ ������

��(�� − � ∑ �����)�
+ � � ���

1
����

 

��(�, �) = � �� ��
�

�∈�

− � � ���
��∈�

��
�� ∙ � � −

�∈��

� � ���
��∈��

�
�∈�

 

where ��(�, �) represents the sum of the measurement errors associated with each observed 
link flow. ��(�, �)  gives the cumulative quantity of unobserved links connected to non-central 
nodes with one unobserved new link, ��� is the coefficient of variation of service time asso-
ciated with the RSU located at node � ∈ �, � is the packed size of each data packed sent 
from a connected vehicle to RSU, ��� is the expected information travel time from link � ∈ �  
to node � ∈ �, �� is the number of vehicles on link � ∈ � , �� is capacity of RSU located at node 
� ∈ �, �� is the set of new links connected to non-centroid node �, and ��

� is the node-link 
index: ��

� = 1 if link � is connected to node �, else ��
� = 0. 

And there are constraints as follow: 

� −
�∈��

� � ���
��∈��

≤ 1,            ∀� ∈ � 

� ���
�

≤ 1,            ∀� ∈ � 

� �����
�

≤ ����,            ∀� ∈ � 

��� ≤ ��,            ∀� ∈ �,    � ∈ � 

 

2.3.3 Simulation  
The above formulation is a multi-objective optimization as a multi-criteria decision-making 
domain containing two objective functions to be optimized simultaneously. The epsilon-con-
straint method, which is one of the representative methods for solving multi-objective optimi-
zation problems, is used, and the simulation is based on python and utilizes the pyomo [11] 
and PuLP [12] packages for optimization problems to obtain results. 
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Figure 10 Pareto front generated from the RSU location model 

Figure 10 shows the pareto front generated from the RSU location model according to differ-
ent rates. As shown in Figure 11, the maximum cumulative quantity of unobserved links that 
guarantee a complete link flow determination is 45, 42, 38, 41, and 43 at rates of 0.2, 0.4, 0.6, 
0.8, 1.0, respectively. When the accumulation of unobserved compounds reaches a maxi-
mum, the measurement error reaches a minimum along the pareto boundary. It indicates 
that the reduction in inference error associated with the inferred link flow requires an increase 
in the measurement error associated with the observed link flow. 

 
Figure 11 The relationship between the measurement error and the penetration rate of the con-

nected vehicle 

Figure 11 shows how the measurement error, which is the sum of the propagation delay and 
the data packet queuing delay, changes as the penetration rate of connected vehicles 
according to the coefficient of variation of service time value increases. When �� is 0, the 
measurement error decreases as the penetration rate of connected vehicles increases from 
0.2 to 0.6, and the measurement error increases as the penetration rate of connected vehi-
cles increases from 0.6 to 0.8. This is also the case when �� is 0.5. 

This is mainly due to an increase in the penetration rate, which significantly reduces delivery 
delays, while data packet queuing latency is not significantly affected. This is consistent with 
the fact that �� does not significantly affect the measurement error when the penetration 
rate is low. However, when �� is 1, as the penetration rate increases, the overall measurement 
error continues to increase (excluding from 0.2 to 0.4), which can be inferred that the data 
packet queuing delay is sensitive to the penetration rate. On the other hand, more detailed 
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research is needed in the future to analyze the phenomenon that the measurement error 
decreases again regardless of the size of �� when it is 0.8~1.0. 

In conclusion, the RSU location to achieve link flow determination is modelled as a multi-
object optimization problem based on measurement error and inference error, and analysis 
is attempted with the pareto optimal solutions. As the measurement error increases along 
the pareto front, it is possible to estimate the relationship that the inference error may not 
decrease even if the cumulative amount of unobserved links decreases. A complete ana-
lytic problem formulation is not possible because the inference error is formulated indirectly 
as the cumulative number of unobserved links, but the analysis is still meaningful in pareto 
optimization in terms of measurement error and inference error between links. Further studies 
are needed from several perspectives in the future. 

 

2.4  Intelligence Placement and Migration in Smart Highway 
In D3.1, we presented our research about state-of-the-art algorithms for distributed intelli-
gence. We described the benefits and the downsides of the centralized and distributed al-
gorithms approach. In this section, we present some first studies on service placement prob-
lem setting and a mathematical formulation for the scenario. Our objective is to use the work 
presented in this section and adapt to vehicular networks. 

2.4.1 Introduction 
Edge computing are designed to support vehicular applications by road services to nearby 
vehicles to support more compute-intensive, latency-aware, and even energy-aware appli-
cations while suppressing the latency impact caused by cloud communication while not 
overloading the network. Providing these services in the edge requires effective service 
placement, as placing them far away from related services can induce latency costs, and 
placing all the services on a single device will consume more device resources than are 
available, reducing service reliability. 

To this service allocation problem, we propose a general Deep Q-Network (DQN) method-
ology for service placement, which considers the placement optimization of multiple inter-
communicating services on a network. This placement optimization considers the improve-
ment of the network performance by minimizing the total impact on the network, while also 
improving energy efficiency. These are generally conflicting objectives, defining the problem 
as a Multi-Objective Optimization (MOO) problem. Valid placements should satisfy device 
constraints, such as available memory, network constraints, such as available bandwidth, 
and application constraints, such as maximally allowed latency between two services.  

In this section, we use several State-of-the-Art (SotA) Multi-Objective Reinforcement Learning 
(MORL) methods to solve the service allocation problem, using the strengths of DQNs to ef-
fectively place the services across the network. Our proposed methodologies use scalariza-
tion and support dynamic weight changes throughout the network lifespan, providing sup-
port for a higher-level control mechanism. 

2.4.2 Problem Setting 
The service allocation problem is an expansion of the General Quadratic Assignment Prob-
lem (GQAP). The service allocation problem expands on this by putting constraints on both 
the devices and the network, whereas GQAP does not consider transport constraints. GQAP 
has been shown to be solvable for up to 22 devices, showcasing the problem complexity 
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[13]. Additional complexities arise due to applying it to edge computing: the available run-
time of the placement algorithm is generally very low, as it takes seconds to find a solution, 
depending on the context. Similarly, the available resources for fog devices are generally 
limited, requiring algorithms with low computational complexity. This further bounds the 
methodologies applicable to the problem. We additionally extend GQAP to consider MOO, 
as the service allocation problem considers multiple competing objectives, defined further 
below. 

2.4.3 Multi-Objective Optimization 
MOO considers the optimization of multiple, possibly conflicting, objectives. This is formulated 
in the Equation 1. 

 
The goal is to traverse the search space x ∈ X to simultaneously minimize the cost of the 
objective function vector F for o different objectives, while considering k different inequality 
constraints, gi , and l different equality constraints, hj . These objectives conflict, thus there is 
no single optimal solution, rather a front of non-dominated solutions. This front is the Pareto 
Front (PF), where each solution is at least better for one objective while being worse for at 
least one other objective. Figure 12 shows an illustration of a Pareto front, where F_1 and F_2 
represent arbitrary minimization objectives. Circles represent sub-optimal solutions in the 
search space, whereas the squares represent the optimal solutions, or the Pareto front. The 
red colour distinguishes solutions which would become invalid if certain constraints are con-
sidered and shows how the Pareto front would reshape under said conditions. Solutions A 
and B are non-dominated solutions, signifying that they are worse on at least one objective 
while being better on at least one other objective. Both solutions dominate C, which is equal 
to B concerning objective F2, but worse for objective F1. However, the search space for the 
placement problem is constrained. The solutions which do not satisfy the constraints are 
shown on Figure 12 as dark red nodes. By removing these from the search space, it becomes 
clear that solution C becomes part of the PF, as B becomes infeasible. However, the entire 
PF is not necessary for the service allocation problem, only one solution is required from this 
front. The selection of this solution is done by a Decision Maker (DM), which defines the pref-
erences for the set of objectives. This definition is often done using scalarization. By summing 
the objectives together, the utility of a solution can be defined as a linear combination of 
the objectives. This scalarization is done using a weighted function, where the weights repre-
sent the importance of each objective. Popular techniques for this approach include the 
weighted sum approach, which purely uses the weights defined by the DM, and the Cheby-
chev scalarization, which also incorporates a reference vector, giving a search direction to 
the algorithm [14]. Scalarization is one of the simplest approaches for solving MOO problems, 
but it is often difficult for the DM to find the optimal set of weights. This has an especially large 
impact on Machine Learning (ML) scenarios, where the training of weights for a neural net-
work can consume a large amount of time and resources. 

Equation 1. Multi-Objective Optimization 
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Figure 12. Illustration of a Pareto front, F_1 and F_2 represent arbitrary minimization objectives. 

2.4.4 Approach 
 Linear Scalarization 

Linear scalarization is the baseline approach for solving generic MOO problems. It uses the 
strength through simplicity approach of the weighted sum, where objectives are multiplied 
with a predefined weight and summed together, as defined in Equation 2. This approach has 
been applied in the SotA already, including Tang et al. [15]. While this approach enables 
tackling MOO problems with single-objective approaches, it suffers from the inability to han-
dle a change in the weights of the objectives. To this end, we propose expanding on the 
scalarization approach by intelligently managing the weights of the objectives, as outlined 
below.  

 

 Deep Optimistic Linear Support 
One approach proposed by Mossalam et al. is the Deep Optimistic Linear Support Learning 
(Deep-OLS) algorithm [16]. This algorithm supports bi-objective optimization through scalari-
zation. The approach first trains two Deep Neural Networks (DNNs) on the weight extrema, 
one optimized for each objective, and then uses the two DNNs to predict the utility of a 
solution. This is then used to create a Convex Coverage Set (CCS) and apply Optimistic Linear 
Support (OLS) to select the weights for which a new policy could gain the most improvement 
in finding a new optimal policy. This results in multiple trained agents, each one optimal for a 

Equation 2. Weighted Sum 
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range of weights. These agents can then be swapped at runtime based on the weights re-
quired. The approach aims to minimize the amounts of networks trained to cover the weight 
space. This approach has been expanded upon for application on the placement problem. 
Due to the current limitations of the Deep-OLS algorithm, only two objectives are used. To 
keep the objectives as conflicting as possible, a focus was put on both a device and a net-
work optimization objective. The network objectives were scalarized together and normal-
ized to the range [0, 1]. This was subsequently also done for the device objectives. This ap-
proach reduces the reward vector to two objectives.  

 Conditioned Network 
Our final approach uses a Conditioned Network (CN), removing the need of having multiple 
pre-trained agents completely, by introducing the weights into the observation space of the 
agent. As proposed by Abels et al. [17], the approach is based on a Universal Value Function 
Approximator (UVFA), where a network learns state and goal embeddings, using a distance-
oriented metric to combine both. These goal embeddings are represented in MORL prob-
lems as the weight vectors. Training happens end-to-end, with the state and goal embed-
ding as input and the multi-objective Q-values as output. In addition, a Diverse Experience 
Replay (DER) methodology is applied to the CN, which is a replay buffer which focuses on 
diversity. This is especially important, as the network should memorize the impact of the dif-
ferent weight vectors as well as the impact of the state-action pairs. Their approach is shown 
to have improved results compared to various other methodologies, including the multi-net-
work approach. 

2.4.5 Results 
For evaluation, a use-case was crafted of 10 devices and 10 tasks, providing 10^10 possible 
different placements. The networks and additions were built using RLLib. Four objectives were 
evaluated: Energy, Worst Case Execution Time (WCET), Latency and Bandwidth. For the 
Deep-OLS approach, Energy and WCET were scalarized as device objective, and Latency 
and Bandwidth scalarized as network objective. Due to instability and slower convergence, 
the vector Q-values, proposed by Mossalam et al. were not used [16]. We expanded on the 
existing approaches of the Deep-OLS and Conditioned networks by building them using a 
Double Dueling DQN, which improves general stability and convergence. The hyperparam-
eters used are found in Table 5.  

Table 5. Hyperparameters 

Hyperparameter Value 

 γ  0.95 

Learning Rate 0 
ε  150 000 

Batch Size 32 

Buffer Size 20 000 

Weight Change Interval 10 000 Steps 

The results were compared with a Non-dominated Sorting Genetic Algorithm II (NSGA-II) ap-
proach, as proposed in previous research [18]. This algorithm was configured with a popula-
tion size of 100, running for 1000 iterations. Additionally, a comparison was made with a stand-
ard random search, iterating over 1000 possibilities before finishing.  
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Figure 13. Execution Time 

All algorithms were generally able to find solutions that satisfied all constraints. Figure 13 rep-
resents the average time required to find a single solution. We pooled the MORL algorithms, 
as they had similar networks and consequently similar inference time. The Cloud solution re-
fers to placing all possible tasks on the cloud, showcasing the traditional approach. The log 
scale showcases that the proposed MORL approaches outperform the traditional NSGA-II 
algorithm by a factor 5. Note, however, that both NSGA-II and Random Search depend on 
the number of iterations to determine timing, whereas the proposed MORL algorithms have 
static timing and resource usage in nature. More interesting results are found on Figure 14, 
which shows the average reward over 50 runs. The x-axis shows the weight for the network 
objective, where a 0 is the corner weight focusing on device objectives and 1 is the opposite 
corner weight focusing on network objectives. Note that the cloud solution does not satisfy 
the latency solution and is invalid, being purely shown as reference. It is clear that the NSGA-
II algorithm finds the optimal solution. This is at the trade-off of consuming considerably more 
time and resources. The bi-objective Conditioned Network approach comes quite close to 
the NSGA-II algorithm, which showcases that a trained network is a valid approach in re-
source-constrained service placement. Interestingly, the neural network generally also finds 
better solutions in 50 timesteps than the random algorithm does in 1000. This is partially ac-
credited to a light skew in the normalization, making network objectives slightly more valua-
ble. In addition, if a corner weight of the Deep-OLS fails to converge, the subsequent search 
becomes infeasible. We notice that the conditioned network trained on four objectives suc-
ceeds at finding useful solutions but is outperformed by nearly all other approaches. This is 
likely due to the large jump in complexity between solving for two and four objectives. The 
results showcase the brittleness of applying Deep-OLS in practical scenarios. The approach 
depends on finding the policies for the weight extrema first, but if these values are far apart, 
the algorithm stops working as expected. In addition, the approach suffers from search 
space complexity differences. In our scenario, it is considerably easier to optimize for network 
objectives, by putting all services on the same device, than it is to optimize for device objec-
tives. This mismatch makes it difficult to build an automated Deep-OLS search methodology, 
as the network objective policy converges considerably faster. We recommend to instead 
train individual policies with individual hyperparameters per weight and apply OLS on top.  
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Figure 14. Average Scalarized Reward 

2.4.6 Future Steps 
Using the MORL techniques described, further objectives, such as privacy and security, and 
constraints, such as software requirements, can easily be added. The impact of these added 
objectives and constraints should be evaluated, and the scalability of the proposed tech-
niques validated. The trained models could be further improved to reduce resource con-
sumption and inference time, using network pruning, as proposed by Balemans et al. [19]. 
Major improvements will most likely also be achieved when evolving towards a distributed RL 
methodology, where the problem is reduced to multiple sub-problems, improving scalability 
but reducing the quality of the found solution. 

 

2.5  Delay-aware offloading task association for networked 
computing 

The networked computing approach represented in D3.1 [6] involves several network and 
resource management decisions to be made before the access to a suitable computing 
server can be provided by the network operator. One of the most important decisions is to 
decide the association of the computing tasks to access points and attached edge servers. 
The association decision is nontrivial because there are a number of factors affecting the 
end-to-end offloading delay. In general, the transmission delay effect of bi-directional of-
floading communication links as well as computing delay of the servers must be included in 
the decision-making process. 

In this section, we study the offloading of computing tasks of users within the network area of 
interest. Typical computationally involved offloading tasks involve e.g., 3D video encoding 
for virtual reality and object detection from a video frame for augmented reality purposes. 
The main aim of the deployed decision-making framework is to maximize the network delay 
coverage probability which corresponds to a fraction of users that experience target of-
floading delay deadline. We apply both centralized and distributed delay-aware association 
approaches and evaluate their delay coverage probability in a network simulator. The target 
high-level server access model is illustrated in Figure 15. It involves on-site users participating 
some event and willing to upload computing tasks to proximity servers, heterogeneous wire-
less access point network, and edge servers at a wired proximity to the closest access point. 
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Figure 15. Target heterogeneous server access model for computation offloading. 

2.5.1 Problem 
We consider N users randomly deployed in a network which involves M heterogeneous ac-
cess points (APs) in a target region of interest. Each user has a computing task that it wishes 
to offload to a computing server (CS) and then receive the result within a target delay dead-
line. The nth computing task is associated with the mth AP-CS pair if the association decision 
variable ��� is 1, and 0, otherwise. 

Let �� and �� be the maximum capacity of the mth AP and CS, respectively. The former is 
measured as a sum over allocated resource blocks ��� whereas the latter is the number of 
computing tasks that can be processed in the given server. Let ��� be the user utility of the 
nth user associated to mth AP-CS pair which is selected to be the inverse of the sum of the 
mean delay caused by the uplink ���

�� , computation server ���
�� , and the downlink ���

�� . The 
constrained optimization problem at hand is given by 

 

max
���

�� � ������

�

���

�

���
� 

 

subject to 

��� = �
���

�� ����
�� ����

�� , ∀�, � (offloading utility) 

��� ∈ {0,1}, ∀�, � (binary decision variables) 

∑ ���
�
��� ≤ 1, ∀� (association to one AP) 

∑ ������ ≤ ��, ∀� �
���  (max AP capacity) 

∑ ��� ≤ ��, ∀� �
���  (max CS capacity) 

 

where the applied constraints are explained in the respective parentheses. The uplink and 
downlink delays for a computing task are calculated via division of number of transmitted 
bits and achieved link bit rate while the server delay is calculated via division of number of 
needed computation clock cycles and circuit clock rate. 
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2.5.2 Applied Solution Frameworks 
In order to resolve the above integer linear programming problem, we first relax the binary 
task association variable ��� to be a continuous-time fractional decision variable which has 
zero lower bound and upper bound of one. After finding the fractional decisions variables, 
the binary decision variables are found by rounding to the nearest integer. 

We then apply two different approaches to resolve the relaxed problem based on both cen-
tralized and distributed control mechanisms. In the former approach, it is assumed that there 
is a central controller which obtains the utility information from each candidate task associ-
ation, makes all the decisions, and then informs the respective AP-CS pairs which tasks are 
allocated to them. In this case, the interior point approach is applied to solve the resulted 
centralized linear programming problem (cf. [31]). 

Regarding the distributed approach, the main goal is to allow each user offloading a task to 
decide which AP-CS pair to associate. In this case, we modify the Lagrange decomposition 
approach originally proposed in [32] which does not consider offloading end-to-end delay 
with server offloading computing. Specifically, the Lagrange decomposition of the problem 
with two coupled constraints becomes �(�, �) =  ∑ ∑ �������� − ∑ ∑ ���������� −
∑ ∑ ������� + ∑ ��� �� + ∑ ��� �� where � and � are the Lagrange vector multipliers. After 
some manipulations, the coupled constraints become separable so that each user can de-
cide the computing task allocation so that the mth AP-CS pair is selected for the nth task that 
maximizes the function arg max

�
 (��� − ����� − ��) while respecting the target constraints 

The gradient decent method is used to find the Lagrange multipliers at each AP-CS pair 
which then broadcast the values to assist the user-induced task association decisions. 

2.5.3 Results 
The main aim of the simulation study is to reveal the delay coverage probability performance 
as function of different delay targets for the computing task association concepts presented 
in the previous subsection. Recall that the delay coverage probability corresponds to the 
fraction of users that achieve the target offloading delay performance in a network region 
of interest. It is assumed that if no association is possible for some tasks, the task immediately 
causes a delay outage event.  

 
Figure 16. A snapshot of target heterogeneous network topology 
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In the target simulation network, we deploy a two-tier network architecture in the region of 
interest with the radius of 1000 m. A snapshot of the network topology is shown in Figure 16 
and the main simulation parameters and used values are provided in Table 6. Matlab 
toolboxes are utilized where possible. 

Table 6. Main simulation parameters and values. 

Parameter  Value 

Network radius 1000 m 

Network architecture Heterogeneous 2-tier 

Path loss model UMi_A 

Shadowing Lognormal; 3dB 

Transmission powers 43 dBm (Tier 1 AP) 
27 dBm (Tier 2 AP) 
23 dBm (Device) 

Node densities Tier 1: 19 APs (deterministic) 
Tier 2: 90 APs (uniform) 
Users: 900 users (Poisson) 

Number of task bits 46 kbit  

Bandwidth per task 5 MHz 

Noise power -174 dBm/Hz 

Carrier frequency 2 GHz 

AP bandwidth 60 MHz 

CS task capacity 10 

Mean cycles per bit 1000 (exponential) 

CPU rate 3 GHz 

 

In Figure 17, we first illustrate the relative contributions of different parts of offloading delay 
regarding the uplink for uploading the video frame, server for finishing the computing task, 
and downlink for returning the computing result within the uploaded video frame. In this 
case, we have used the standard distributed received power aware association method 
which favours the performance of the downlink delay contribution when selecting the task 
association. It is seen that, as expected, the downlink performs the best followed by that of 
the server and uplink delay coverage sub-contributions. 
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Figure 17. Comparison of different parts contributing on overall offloading delay coverage as func-

tion of set delay target for power-aware association. 

We next move to evaluate the comparison of the centralized and distributed delay-aware 
task association with a standard power-aware association approach discussed above. In 
Figure 18, we first present the delay coverage probability for the end-to-end offloading delay 
for the case where the capacities of the APs and CSs are unlimited. It is seen that after certain 
delay threshold, the delay-aware approaches start to clearly outperform the power-aware 
method as it is able to select the associations more efficiently using the delays of all subparts. 
Since the capacity constraints of APs and CSs are not activated in this case, the performance 
of centralized and distributed approaches for the delay-aware method are quite similar. In 
Figure 19, we then activate the capacity constraints, and it is visible that the performance 
gets worse because the association opportunities are reduced with capacity limitations. 
Moreover, the difference between delay-aware and power-aware approaches start to in-
crease. This is because, unlike the delay-aware approaches, the power-aware approach 
does not use the information on the capacities of the APs and CSs. Furthermore, it becomes 
more difficult for the distributed approach to keep up with the centralized approach be-
cause the distributed approach is not directly aware of other task association decisions. 

 
Figure 18. Comparison of different task association approaches with unlimited AP and CS capacities 

as function of target offloading delay. 
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Figure 19. Comparison of different task association approaches with limited AP and CS capacities as 

function of target offloading delay. 

2.5.4 Conclusions 
In this subsection, delay-aware computation task association methods are studied under a 
networked computing framework where both communication links and server computation 
affect the end-to-end delay. It is demonstrated how delay-awareness can be beneficial in 
comparison with power-awareness with regards to delay coverage performance. Moreover, 
the performance relationships between centralized and distributed association methods are 
illustrated. In future work, the inclusion of computation allocation methods for each task will 
be examined to further reduce the overall delay of edge servers. 
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3 Architectural Techniques for Distribution of Intelligence 
The overall goals of DEDICAT 6G include transforming beyond 5G networks into a smart con-
nectivity platform. The platform needs to be highly adaptive, ultra-fast, and dependable/re-
silient for supporting securely innovative, human-centric applications tentatively by combin-
ing communication infrastructure with the provision of computation and storage resources 
at the edge to allow for the flexible realization of the envisaged perceived very low latency, 
ultra-fast response time, energy-efficiency, high productivity, and low cost. The projected 
numerical key performance indicator improvements are hard to achieve via the old/current 
means of increasing the clock rate of processing units, speed of communication links and 
incremental modifications to the methodology due to the complexity of the networked sys-
tem and approaching fundamental limits of computation and communication technology           
[42][45]. The most promising methods left are architectural and algorithmic improvements 
addressing the performance, productivity, utilization and energy-efficiency issues of compu-
tation and communication in the network. 

This section summarizes the work being done for distribution of intelligence (DoI) via investi-
gation of low-level architectural techniques and engines utilizing them as well as employing 
the higher-level algorithms and conventions discussed in the previous sections of this docu-
ment and WP2 deliverables. 

3.1  Introduction 
Intelligence can be characterized here as any computation and related communication 
that changes the state of the network in a meaningful way. 

From a point of view of computation, the network can be seen as an entity consisting of a 
high number of computing nodes connected together via communication links. The nodes 
are not homogeneous but anything from high-performance data centers and edge servers 
down to user equipment and miniature IoT computing devices. Some of them have a more 
complicated internal architectural structure, featuring multiple processor cores, CPUs, pro-
cessor cards and clusters of them with internal communication channels, as well as memory 
and input/output devices. Also, communication links are typically heterogeneous. In addi-
tion, neither the computational workload of the network nor its hardware components are 
constant or homogeneous but alter more or less frequently all the time, depending on the 
prevailing user data traffic distributions and acts of service providers. Let us call computation 
here parallel if it happens simultaneously in multiple units within a node and distributed if 
multiple nodes are involved. 

In order to get the best performance out of the network, the computation needs to occupy 
intra-node units and be distributed among the network nodes so that the overall computing 
capacity would be maximized and the resource usage, e.g., time, energy, design effort, 
building and operating costs, would be minimized while ultimately supporting the designated 
use cases. A typical network node alone has more than a thousand design parameters not 
to mention the plurality of nodes and fitting the subsets of the computation into them. It is 
therefore evident that determining the optimal distribution is a very demanding multi-target 
nondeterministic polynomial (NP) complete problem, which cannot be solved with the cur-
rent technology [33]. The current 5G systems approach distribution by relying on simple of-
floading functionality from UE to the network, virtual machines allowing flexible allocation of 
resources in the cloud, containers reducing the state of computation, multicore CPUs allow-
ing (constrained) parallel processing and a programming paradigm relying mostly on inde-
pendent sequential components and asynchronous execution of threads. 
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To boost the 6G network-level architectural design decisions, the possibilities of low-level ar-
chitectural techniques and integration of them to entities are considered. For flexible and 
efficient placement of computation, an architecture utilizing the following techniques, such 
as (i) swift context switching, (ii) specific patterns of computation and communication, (iii) 
balancing the computational and communication load, (iv) moving computation, (v) re-
ducing the state of computation, (vi) cost-efficient synchronizations, (vii) easy programma-
bility and (viii) efficient placement of computation, overcoming the limitations of 5G network 
and processing solutions could be potentially applied (see Figure 20). 

 

 
Figure 20. Architectural techniques for distribution of intelligence. 

In the following subsections, we discuss about using VTT’s parallel processor framework and 
the ideas presented in this project to form a powerful edge processor. We go through pre-
liminarily at low level, how such processor would perform against the existing industry stand-
ard solutions. The commercial exploitation of this technology will be investigated as a part of 
our effort (involving likely an external industrial partner) to make it gradually available in the 
markets. 

Higher-level improvements are searched also from an Orchestration Engine that will serve as 
an interface between the DEDICAT 6G Decision-Making Functional Components and the 
NFV Orchestrator to properly instantiate ad-hoc network slices and assist the Decision-Making 
Functional Group (FG) in the application of the instantiation, scaling, or migration network 
service/slices orchestration procedures according to the outputs generated by the algo-
rithms in this FG. 
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Architectural Techniques 

In order to solve the performance, resource efficiency and usability problems behind the low-
level architectural techniques listed above, discussed in more detail in D3.1 (cf. [6]) and meet 
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the ambitious DEDICAT 6G KPI targets T 6G, let us consider utilizing VTT’s multiprocessor frame-
work [41] and the findings of this project to outline an efficient edge processor architecture. 

A processor utilizing such architecture could be used as a key computing component for 
building efficient networked computing devices, such as edge servers and cloudlets, sup-
porting efficient distribution of intelligence. VTT’s aim is to study exploitation possibilities of the 
edge processor as a part of larger commercialization effort of general-purpose parallel pro-
cessor IP funded by VTT and Business Finland. One concrete possibility here is to find a spin-
off company to take care of further development and bring processor products to the mar-
ket with suitable industrial partners since manufacturing leading edge processors is highly 
expensive and requires a lot of manpower and expertise. 

The Thick Control Flow Processor Architecture for Edge (TPA-E) is a scalable multiprocessor 
architecture that can be configured at design time for various constellations lending widely 
solutions from the original TPA [39] and VTT’s processor framework [41] aiming generally at 
addressing the performance and programmability issues of current general-purpose multi-
core architectures. The framework defines principles how to build efficient Emulated Shared 
Memory (ESM) processors utilizing the Thick Control Flow (TCF) abstraction; how to make them 
flexible and expandable with accelerators; how to achieve backwards compatibility with 
existing commercial product lines; includes a number of processors, interconnect and 
memory system architectures and designs needed for that purpose and outlines the meth-
odology to develop program. A TCF is an abstraction of parallel computation that merges 
self-similar threads into a single computational entity that is independent of the number of 
threads [44]. Self-similarity refers here to properties of flowing through the same control path 
and having homogeneous operations. We call the component threads of a TCF fibers to 
distinguish them from ordinary threads having their own control. The fibers within a TCF are 
executed synchronously with respect to each other in order to simplify parallel programming. 
In ESM, the latency of the memory system is hidden via multithreading and sufficient band-
width, the synchronization cost is virtually eliminated using wave synchronization and low-
level parallelism exploitation is optionally improved by chaining of Functional Units (FU) as-
suming there is enough parallelism in the functionality at hands [46][43][35]. Instead of multi-
threading, TPA-E uses a similar technique for fibers, called interleaved multifibering. This lets a 
fiber to execute other fibers while it is making a memory reference. If the executed program 
contains enough fibers the latency of the shared memory system can be completely hidden. 
Sufficient interconnection bandwidth is provided by using an M-way multimesh network. The 
synchronization wave is used to separate memory references belonging to consecutive steps 
of execution by issuing all fibers followed by a synchronization message. Synchronization mes-
sages are routed in the network through all possible paths so that when a synchronization 
message arrives to a router, it blocks the message (and related paths) until a synchronization 
message can be found in all inputs. Then the router fetches all the incoming messages and 
sends out a synchronization message via its outputs. Low-level parallelism is supported in TPA-
E by organizing FUs as a sequential chain rather than in parallel so that consecutive instruc-
tions can be executed regardless of possible interdependencies within a step. 

A TPA-E multiprocessor consists of F Frontend (FE) processing units and B Backend (BE) pro-
cessing units, intercommunication networks and a memory system (see Figure 21). FEs take 
care of fetching instructions from the memory and executing the common parts of TCFs, such 
as control of the flow and base address computation. In turn, BEs handle execution of indi-
vidual fibers. The memory system consists of two parts: Depending on the FE architecture of 
choice, FEs are connected to either a traditionally organized Symmetric MultiProcessor (SMP) 
or NonUniform Memory Access (NUMA) memory system and BEs are attached to an ESM 
system employing a multimesh interconnect. The latter supports synchronous operations and 
parallel-computing specific access patterns such as concurrent reads and writes, reductions 
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and multiprefix computations as well as powerful atomic compute-update operations. The 
FE and BE parts of the memory system are also connected together. 

 

 
Figure 21. High level organization of TPA-E (FE=frontend, BE=backend, M=memory, S=switch). 

A TPA-E FE system resembles an ordinary multicore CPU and in fact the VTT’s multiprocessor 
framework allows a processor designer to use a variant of existing commercial CPU core as 
FE. In this project, however, we use the framework default, the Minimal Pipeline Architecture 
(MPA) Very Long Instruction Word (VLIW) processor [34] as the FE architecture. MPA features 
a number of FUs commanded by dedicated sub-instruction fields in a single (compound) 
instruction word. The original version of MPA features a special minimal pipeline with only two 
stages—fetch and execute with no pipeline delays in the case of control transfer. There are 
some modifications to the pipeline to allow multi-TCF operation but delay-free operation of 
the pipeline also for control operations was retained. 

A BE is a special processing unit resembling a MultiBunched/Threaded Architecture with 
Chaining (MBTAC) ESM processor core [40] and containing logic for operand selection, chain 
of FUs, latency compensation unit and write back logic. However, a TPA BE does not include 
an instruction fetch unit and sequencer. In TPA-E these belong to the FE system. 

For efficient edge computing, TPA-E is aimed to support distribution of intelligence in both 
processor and network edge region levels. 

Here we present a high-level view of the processor only since TPA-E utilizes VTT’s multiproces-
sor framework not belonging to this project. In addition, VTT aims to commercialize its proces-
sor technology and wants to protect the low-level IP independently of this project. 

To figure out, how well TPA-E compares to current commercial solutions and addresses the 
problems behind the low-level architectural techniques of D3.1, we wrote a number of par-
allel test kernels in C/pthreads and equivalent TCF-aware programming language, per-
formed execution time and program code length measurements on two industry standard 
processors (4-core Intel Core i7 6820HQ and 18-core Xeon W 2191B) and an entry-level 1-FE 
16-BE TPA-E. TPA-E execution time was measured with a help of TCF simulation software of 
VTT’s processor multiframework. Since there is no silicon implementation of TPA-E, we as-
sumed that it would run at the same 3.2 GHz as Core i7 and Xeon W. The measurement 
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included here represent processor/computer level solutions whereas region and network 
level effects are aimed to be studied for D3.3. In the following we present results of the meas-
urements grouped similarly as in D3.1: 

Swift context switching — Context can be defined as the minimal set of data used by a com-
putational task that must be saved to allow task to be interrupted and later continued from 
the same point. Swift context switching is important to support multitasking, i.e., running mul-
tiple computational functionalities in the same processor. In principle, all CPUs capable of 
executing multitasking operating systems supporting switching of threads but the latency of 
thread switching is typically a few hundred clock cycles. This is not a problem when executing 
independent threads that are switched infrequently enough. However, if the threads of the 
functionality at hands require dense intercommunication, the performance can be cata-
strophically poor as indicated by our measurements of memcopy kernel as a function of the 
number of threads on Core i7 and Xeon W processors (see Figure 22). The behaviour of both 
processors is similar—the execution time decreases as the number of cores increases until 
there is one thread per processor core. After that, the execution time stays the same until 
there are two threads per core since Intel processors feature a two-way multithreading 
called hyperthreading. Finally, as the number of threads exceeds the number of hardware 
threads the execution time instantly jumps up by almost three orders of magnitude. This is 
caused by thread switching time that cannot anymore be hidden with hardware threads, 
synchronization costs and especially the operating system scheduler, which allocates a way 
too long time slice for each thread performing the final synchronization—the only place 
where there are dependencies in the memcopy kernel. For comparison purposes we also 
show the execution time level of TPA-E performing the same task with a single TCF having 
maximal parallelism. It avoids this problem with its zero-switch latency multifibering mecha-
nism and allows a programmer to easily get the full performance out of the hardware. 

Specific patterns of computation and communication——Patterns of parallel and distributed 
computation and communication refer to situations where multiple computational threads 
interact in a regular way that can be seen as a pattern. The most popular patterns include 
parallel execution, reduction, spreading and permutation. These are used, e.g., in parallel 
processing and communication, collection of data, multicasting as well as in certain map-
ping tasks. 

As a part of our development work, we studied five alternative techniques for efficient multi-
operations in TPA—a fast single-instruction multioperation (FS), a symmetric two-instruction 
multioperation (S2), a backend-frontend multioperation (BF), an optimized two-instruction 
multioperation (O2) and a multioperation load (ML). For this WP, we measured the execution 
time of memory-to-memory reduction patterns in TPA-E supporting the variants and com-
pared the results to sequential algorithm without any of these operations. 
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Figure 22. Execution time of blocked version of the memcopy benchmark (log scale). 

According to our measurements, the multioperation techniques can speed up execution of 
memory-to-memory reductions by a factor of 15.57 w.r.t. sequential execution and by a fac-
tor of 43.82 w.r.t. 16-processing unit baseline machine (see Figure 23). 

 

 
Figure 23. Relative performance of a multioperation reduction in TPA-E as a function of the input data 

array size. 

To demonstrate how well practical low-level patterns are supported in TPA-E with respect to 
available resources, we determined the fraction of the memory bandwidth for six memory 
access patterns—blocked, interleaved, random, matrix multiplication row style, matrix multi-
plication column style and concurrent memory access. The results, comparing TPA-E to Core 
i7 and Xeon W, are shown in Figure 24. 

According to the measurements, Core i7 and Xeon W utilize their memory bandwidth only 
for blocked access pattern while TPA-E is able to retain virtually the maximum bandwidth 
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regardless of the access pattern. The fact that 18-core Xeon W shows significantly weaker 
results than 4-core Core i7 may indicate that there is a serious intrinsic scalability problem in 
current architectural approach of multicore processors and systems built on top of them as 
we have been predicting [38]. 

 
Figure 24. Fraction of the bandwidth utilized for shared memory access patterns. 

Cost-efficient synchronizations—Synchronization is the key mechanism to ensure the correct 
behaviour of parallel and distributed software at hands in the case of inter-thread depend-
encies. Unfortunately, in current multicore systems the cost of synchronization can be very 
high. The main reason for this is the asynchronous nature of execution in multicore CPUs, 
computers with multiple processor sockets, clusters of computers and especially in the net-
work. A notable fact is that the need for fast and efficient synchronizations is much more 
stringent in fine- grained parallel computing than in coarse-grained distributed computing 
that is not sup- posed to be able to execute fine-grained parallel algorithms efficiently. 

We compared the execution time of barrier synchronization in Core i7 and Xeon W proces-
sors to wave synchronization employed by TPA-E and observe that TPA-E synchronizes at least 
1000 times faster for the cases in which there is large enough number of threads for full per-
formance (see Figure 25). In addition, the synchronization cost in Intel processors makes a 
jump of multiple magnitudes up as the number of hardware threads is exceeded. 

Easy programmability—Programmability is said to be good if the functionalities can be ex-
pressed compactly and naturally without unnecessary architecture-dependent constructs. 
A key factor is also portability and ability to retain performance with respect to the number 
of execution units among a family of processors using the same approach but having a dif-
ferent hardware configuration. The main challenges of current systems include the asynchro-
nous nature of execution and sensitivity to non-trivial memory access patterns. Distributed 
systems, such as regions of edge servers, pose further challenges to programmability since 
the latencies are much higher, and throughputs lower than those within parallel machines. 
Programmability is directly proportional to productivity of software development, and thus 
cost of the software. TPA-E solutions for this come from the ESM architecture and TCF abstrac-
tion. 

The TCF versions the kernel functionalities are written as a single TCF, maximally parallel, syn-
chronous programs utilizing available primitives of parallel computing where relevant. There 
is no need for explicit synchronizations in the tested TCF algorithms. Consider three alternative 
ways of implementing functionalities in parallel for Intel processors: The straight-forward 
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Pthreads versions are written similarly as the TCF versions except that synchronizations are 
added to the end to be able to determine when all the threads have completed their tasks 
and wherever they are needed to guarantee the correct execution order of operations as-
signed to different cores. The matched parallelism versions limit the number of threads to a 
given maximum, which in our case is the number of processor cores P. The matching is done 
by employing loops that process at most P elements (and threads) at the time. We expect 
matched parallel versions to be substantially faster than straight-forward ones. This is because 
matching eliminates interference between time slots defined by the operating system sched-
uler and actual computation as well as the thread management overhead, especially in the 
case of fine-grained parallel functionality. The blocked versions divide the processed data 
elements to blocks that are executed in the processor cores in parallel. This kind of mapping 
and implied partitioning should also improve the performance over the matched parallelism 
versions due to increased locality and reduced inter-processor communication. 

 

 
Figure 25. Execution time of a barrier synchronization (log scale). 

In order to measure the complexity of programming, we implemented three versions of ma-
trix addition algorithm A:=A+B for Intel multicore CPU systems with C/pthreads and a single 
TCF version for a system utilizing ESM and TCF with a C/pthreads-style parallel language. From 
the programs, we determined the number of active code lines. Three program versions for 
the Intel system were included since the simplest straight-forward pthreads version interferes 
in a very ugly way with the operating system scheduler and gives 27.8 million times slower 
execution time in Core i7 and 6.1 million times slower execution time in Xeon W than in TPA-
E. The matched parallel pthreads version in Core i7 and Xeon W gave 14.5x and 99.1x slower 
performance than in TPA-E, respectively. Finally, the blocked version comes closer to TPA-E 
performance. In Core i7 it executes 4.5 times and in Xeon W 1.2 times slower (or 36% per 
processor core slower) than that in TPA-E. 

Figure 26 shows implementations of as active code lines. Note that the number of active 
code lines for pthreads algorithms increases as the execution time decreases and that the 
ESM version is 2, 3 and 6 times shorter, respectively. In addition, pthreads needs initialization, 
thread creation and termination code. Note also that the trade-off between the perfor-
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mance and software complexity in Intel processors that forces programmers to employ com-
plex and error-prone programming techniques to have a decent performance whereas TPA-
E is not affected. 

 
Figure 26. Parallel matrix addition kernel for Intel CPUs and an TPA-E. 

Efficient placement of computation—The best performance is achieved when the right data 
is in the right place at the right time since moving both data and computation, i.e., execution 
of operations take time. Additional complications come from the fact that the farther away 
data is from the place where it is needed, the longer time it takes to obtain it and the more 
dependencies there are, the longer it takes to execute if there are resource limitations. Ad-
ditional complications can come from possible contention of traffic in the network caused 
by non-optimal placement of data and functionality in the network, reliability issues poten-
tially requiring resubmissions, protocol issues, deadlocks, livelocks, race conditions, sequen-
tialization, physical defects, noise etc. 

Current multicore systems are highly sensitive to data and functionality placement. These 
phenomena are augmented in the distributed computers such as cloudlets and regions of 
edge servers due to high latencies and limited bandwidth. 

We measured the execution time of the matched parallelism and blocked versions of the 
memcopy program as a function of the number of threads in systems with 4-core Intel Core 
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i7 and 18-core Xeon W processors. Both processors feature two way-multithreading (or hy-
perthreading as Intel calls it) where a processor core can execute up to two threads without 
typical 100+ clock cycle thread switching overhead. 

 

 
Figure 27. Execution time of matched parallel and blocked versions of the memcopy benchmark 

(log scale). 

We figured out how these improvements in low-level architectural techniques show up as 
performance and software complexity in applications utilizing the patterns of parallel and 
distributed computation and communication. For Intel processors all three programming 
styles (straight-forward, matched parallel and blocked) are included while the TPA-E versions 
utilize just one TCF. The following six Figures present the results of our initial performance and 
code length measurements. 

According to our measurements, TPA-E executes straight-forward benchmarks in average 
56.2 million times faster than Core i7 and 11.9 million times faster than Xeon W with three times 
shorter programs (counted as active program lines). These massive speedups are caused by 
the joint effect of slow synchronization and context switching as well as operating system 
scheduler allocating a way too long slices for the threads. In matched parallel versions the 
speedups for TPA-E drop to 26.6x and 164x, respectively. The Intel processor program length 
overhead increases to 3.5x. These programs eliminate the extremely slow context switching 
in barrier synchronizations but suffer from last level cache line sharing. Finally, in blocked tests, 
TPA-E is in average 9.32 times faster than Core i7 and 3.35 times faster than Xeon W with one 
sixth of the active program lines. 
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Figure 28. Relative performance of straight-forward parallel versions of the kernels (log scale). 

 
Figure 29. Relative performance of matched parallel versions of the kernels (log scale). 

 
Figure 30. Relative performance of blocked versions of the kernels (log scale). 
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Figure 31. Relative active code line count of straight-forward versions of the kernels. 

 
Figure 32. Relative active code line count of matched parallel versions of the kernels. 

 
Figure 33. Relative active code line count of blocked parallel versions of the kernels. 
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Based on these initial measurements with an entry-level configuration of TPA-E, it seems pre-
liminarily possible that a processor like TPA-E, integrating the low-level architectural tech-
niques listed in D3.1 and VTT’s multiprocessor framework, could make it possible to build net-
worked computing devices providing substantial speedup and giving a substantial software 
development productivity boost with respect to industry standard solutions. This would help 
to in part achieve the 10x latency improvement and efficiency targets of DEDICAT 6G.  

3.3  Orchestration Engine 
The orchestration engine will be part of the (Service) Orchestration FC defined in WP2’s ar-
chitecture and will serve as an interface between the Decision-Making FCs and the NFV Or-
chestrator to properly instantiate ad-hoc network slices, thus enabling the provisioning of a 
unique 5G/B5G-based virtualized network space to run vertical’s apps under the requested 
conditions. Moreover, the orchestrator engine will assist the Decision Making FG in the appli-
cation of the instantiation, scaling, or migration network service/slices orchestration proce-
dures according to the outputs generated by the algorithms in this FG. 

To play such role within the DEDICAT6G platform the orchestration engine must receive in-
structions and concrete information coming from several internal FCs and with the external 
NFV Orchestrator. The overall functional overview and their interactions are represented in 
Figure 34 and summarized as follows: 

 CEDM FC: It is the FC responsible to take decisions about coverage extension. Its out-
put will feed the orchestration engine with information about the existing MAPs de-
ployment where the network provisioning is required. 

 IDDM FC: The IDDM will send to the orchestration engine some recommendations to 
ensure optimality in the management of the computational resources consumed by 
the NFV-related intelligence (e.g., VNFs). 

 NODM FC: This FC will assist the orchestration engine to properly configure the network 
slices by providing network-related information.  

 μS/FC Registry FC: It can serve information about the computational requirements of 
to either μS or FC when needed. 

 μS/FC Repository FC: The orchestration engine can access this repository when infor-
mation about the container/VM images of the FC/μS is required.  

 NFV Orchestrator: This external entity is the one responsible to manage the NFV infra-
structure (NFVI) resources to establish network slices. The orchestration engine will 
command the NFV-O according to the decisions made within the DEDICAT6G plat-
form. 

For the interest of WP3, in this deliverable we will put the light on the parts related to the 
orchestration of the intelligence and computational resources in the system to be managed 
by the orchestration engine to configure and instantiate network slices, not the networking 
and other configuration mechanisms. However, it is worth mentioning that the nature of the 
orchestration engine component tackles both WP3 and WP4 domains, thus, some parts in 
D3.2 and D4.2 are common in both documents to clearly understand this work in a 
standalone way. See D4.2 for more information on the orchestration engine from a NFV per-
spective to complement the vision provided in this deliverable.  

Furthermore, it is expected that this orchestrator engine will expand its functionalities to ena-
ble orchestration mechanisms related to the communication with the Edge Orchestrator 
(e.g., Kubernetes) in a similar way than with the NFV Orchestrator. 
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Figure 34. Orchestration engine schema in the DEDICAT6G platform. 

3.3.1 Orchestration Engine Design 
In this work, we present a cloud-native modular design for the orchestration engine compo-
nent ready to work in a distributed microservice environment. This design is focused to be 
implemented in a lightweight and scalable implementation suitable for deployment both in 
the cloud and at the edge domains. It is worth mentioning that this design is targeted to 
communicate with standards and trending external tools. 

The Orchestration Engine is focused on assisting the Decision Making FG to translate and 
apply recommendations in the external 5G/B5G system, mainly focused on the NFV side by 
means of the NFV-O. Our design (shown in Figure 35) assumes the ETSI Open-Source MANO 
(OSM) as NFV Orchestrator. In this iteration, the orchestration engine design comprises 5 main 
sub-modules:  

 Engine Manager: This module works with all the other components to provide the main 
functionalities of the orchestration engine and as a link of the rest of the modules. It is in 
charge of managing all internal modules in a coordinated way according to the re-
quests coming from the Decision Making FCs.  
 Blueprint/Descriptor creator: This entity is responsible for automatically creating or 
modifying descriptors based on incoming requests. A descriptor defines what is under-
stood as a VNF, a network service and a network slice. These templates are based on 
the ETSI SOL006 data model [47], which are supported by OSM. 
 OSM Client: This component is in charge of implementing OSM Client to be able to 
communicate with OSM through the native OSM API. It also implements some new fea-
tures that are not currently available in OSM Client, for instance, post processing mes-
sages received by OSM to extract more valuable and concrete information to manage 
the instances which are running. 
 gRPC Server: It exports the set of functionalities offered by the orchestration engine to 
the rest of FCs in the DEDICAT6G platform. Also, the gRPC-based server to enable rapid 
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and efficient communications channels among the different FCs. More information 
about gRPC and its benefits for microservice communications in the next subsection.  
 Cache DB: This database will store temporal and persistent data, like information 
about the network and received messages, necessary for the orchestration engine tasks. 

 
Figure 35. Orchestration Engine design 

3.3.2 Experiment Set-up  
For the purpose of implementing, testing, and validating the functionalities of the orchestra-
tion engine, details of a preliminary set of experiments aimed at that end are shown here. 

 

 Particular WP3 Goals 
As exposed before, the orchestration engine is a component that implements some key 
functionalities of the WP2-defined Service Orchestration FC. The main objective of this exper-
iment is to demonstrate the key functionalities of such component within a realistic B5G-
driven environment under the DEDICAT6G umbrella. Despite, the main objective can be 
shared between WP3 and WP4, here we have defined a set of WP3-oriented sub-goals to be 
shown in this work: 

 Demonstrate an agile and efficient microservice-based communication between the 
IDDM FC and the orchestration engine.  

 Show a preliminary working implementation of some WP3-related FCs suitable to be 
potentially extended to the rest of the DEDICAT6G platform. 

 Preliminary implementation of the IDDM FC output WP2-defined data model.  
 Show the impact of the network slice instantiation in the intelligence distribution and 

computational resource consumption in the edge nodes of the system.  
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 Related Technologies 
We now introduce the set of open-source software tools employed to perform the corre-
sponding functions presented in the orchestration engine design chosen to meet the above-
mentioned objectives: 

 
 Docker [48]: Docker is an open-source tool that automates the deployment of appli-

cations running inside software containers, thereby bringing an additional layer of ab-
straction and automation to the virtualisation of applications. It is currently the most 
widely used tool in microservices-based deployments. In this work, Docker is used to 
create the containers where the different components are implemented and de-
ployed.  

 Kubernetes [49]: is an open-source platform for managing container deployment, as 
already presented in D3.1. The role of Kubernetes in this implementation is to manage 
and host the Docker containers related to the DEDICAT6G FCs and also to host the 
OSM instance. 

 gRPC [50]: it is a high-performance, lightweight, and RPC-based communication pro-
tocol used in microservices environments and hosted by the Cloud Native Computing 
Foundation. A prominent feature of gRPC is that its data is structured using strict and 
lightweight rules defined by Protocol Buffers (Protobuf [51]), a framework for serving 
structured data. The data in Protobuf, at the same time as in gRPC, is specified and 
defined by an Interface Description Language (IDL). It can create language-inde-
pendent interfaces to support communication between servers or clients written in 
different languages. The present work generates gRPC libraries to enable the com-
munication among the DEDICAT6G FCs. Additionally, the messages of the DM-related 
FCs (outputs) have been implemented by using the data models defined in D2.4.  

 SQLite [52]: this lightweight and fast SQL-driven database is the chosen one to repre-
sent the role of the cache DB in the orchestration engine. 

 OSM [53]: Open Source MANO is the ETSI-hosted NFV orchestrator fully aligned with 
ETSI NFV standards. As explained extensively in D4.1, it is capable of managing and 
orchestrating virtualized resources in NFV-based ecosystems to enable the instantia-
tion of 5G/B5G network slices. This is the tool selected for these purposes as NFV-O in 
the present work. 

 OpenStack [54]: is one of the most popular open-source cloud infrastructures used to 
manage and host third-party services in virtual machines, bare metal and containers. 
In this implementation, OpenStack plays the role of a Virtual Infrastructure Manger 
(VIM) that represents an edge node with the computational resources to host the VMs 
of the VNFs in a network instantiation. In our case, we consider two different Open-
Stacks as follows in the next sub-section. 
 

 Implementation Schema  
The trial has been carried out on the ATOS Telecommunications test bed, following the im-
plementation scheme described in Figure 36. The testbed features a Kubernetes cluster (K8s) 
representing the cloud domain intended to host and control the Docker containers, in this 
case the DEDICAT6G FCs and the orchestration engine, all of them written in Python. In ad-
dition, in this same cluster, we have deployed an instance of OSM, playing the role of NFV-
O. Finally, the edge domain is modelled with two Open Stacks (VIM) instances, physically 
separated, to consider two different edge nodes. We assume both VIMs as part of the NFV 
infrastructure to enable the establishment of multi-site network slices. 
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Figure 36. Orchestration Engine Implementation Schema 

Regarding connectivity among existing entities, we consider two types of communication, 
internal to DEDICAT6G and external to the rest of the system. A Docker bridge (a virtual net-
work) has been configured to allow communication within the DEDICAT6G platform. This 
bridge is used to enable the establishment of gRPC channels, which is the microservices-
based communication chosen for data exchange between the FCs and the orchestration 
engine. In this work, the orchestration engine is considered as the anchor of the DEDICAT6G 
platform to link to external entities. In this case, the orchestration engine has an OSM client 
to allow leveraging the by-default OSM REST interface. It is noteworthy that this interface is 
defined in the ETSI GS NFV-SOL 005 specification [47]. Finally, OSM recognizes the two Open 
Stacks as VIMs, and uses the Or-Vi interface for the instantiation of the VNFs in an automatic 
manner [Or-Vi].  

For the sake of simplicity and to cover the objectives in this work, we have assumed a Net-
work Slice with two network service, one of them with two VNFs and the other with one.  

 Workflow 
Here, in Figure 37, we present the workflow followed in this work. It is important to clarify that 
this experiment starts with the interaction between the IDDM FC and the orchestration en-
gine. Thus, we assume that the IDDM have previously calculated the output. In this work, we 
focused on the orchestration engine side, not in the optimization of the intelligence distribu-
tion. Also, due to the relation to coverage extension mechanisms, the parallel interactions 
among the orchestration engine and the CEDM and NODM are shown in D4.2. The steps in 
this experiment are as follows:  
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Figure 37. Sequence Diagram of the workflow  

1. The Core of the IDDM FC generates the output by using the structure defined in the 
corresponding WP2 data model, and encapsulate this info in the shape required and 
sends it to its OE_Client 

2. The OE_Client, opens a gRPC channel to send the generated message (IDDM output) 
to the Orchestration Engine gRPCServer by using a concrete rpc. 

3. Now, the IDDM Output is in the orchestration engine domain, and the gRPC forwards 
the message to the EngineManager 

4. Then, the EngineManager is in charge of parsing the data and structure it according 
to the internal structure of the cacheDB, and store it 

5. Once the IDDM data is stored and processed, the EngineManager commands the 
DescriptorGenerator to automatically create the corresponding descriptors (VNFDs, 
NSDs and NSTD) with the IDDM information in the correct fields according to the ETSI 
SOL006 data model.  

6. After this stage, the network slice is properly modelled in this set of descriptors are it is 
ready to be instantiated. Thus, the EngineManager requests the OSMClient to instan-
tiate the NST (Network Slice Template in ETSI SOL006 terminology). 

7. The OSMClient sends a request by using the OSM REST interface to instantiate a net-
work slice based on the descriptor attached in that request. 

8. Finally, OSM process this request and orchestrate the instantiation of the network slice 
in the VIMs. 

9. After a few seconds, the network slice is properly configured and available to be used, 
with the VNF associated to the NSs consuming computational resources in each VIM. 

 

3.3.3 Preliminary Results 
As can be seen in Figure 38, four different docker containers have been built and instanti-
ated, three that emulate the CEDM, IDDM and NODM FCs, and an additional one that con-
tains the orchestration engine. Each of these containers, have preconfigured ports to enable 
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gRPC communication by using the Docker bridge, thus, allowing the transmission and recep-
tion of messages compliant with the data models defined in D2.4. 

 

 
Figure 38. Snapshot of the Docker environment with all the containers up and running 

 

In this scenario, our main target is to instantiate a network slice, called NST001, which includes 
two NSs, the first one called drone_ns, emulating a NS to be instantiated in the drone IT re-
sources, and the latter called car_ns, with a similar meaning. The drone_ns is composed by 
one VNF which will be instantiated in the VIM associated to the drone, while the car_ns has 
two VNFs which will be instantiated in the VIM corresponding to the car.  The first step once 
all containers are running, is to start the gRPC server of the orchestration engine, as can be 
seen in Figure 39a. Once the gRPC server is ready, the FCs can send all output messages, by 
using a specific gRPC Orchestrator Engine client, that will be received and stored by the OE. 
In this case, we will focus on the IDDM side, as CEDM and NODM will be further detailed in 
D4.2.   

The information of such gRPC message, built by the core of the IDDM FC representing its 
recommendation after executing concrete algorithms to distribute the intelligence, is re-
ceived by the OE gRPC server and stored in the cacheDB in the orchestration engine as can 
be seen in Figure 40. For instance, in this figure it can be appreciated how the IDDM indicates 
the OE about how to distribute the intelligence associated to the request “REQ001” between 
the edge nodes “EN001” and “EN002”, which means that the intelligence associated to the 
network services (VNFs) must be deployed in the edge nodes attached to the Drone VIM 
and the Car VIM correspondingly. The Task Class Type 201 indicates that the nature of the 
request is for Network Services.  
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Figure 39. Terminal snapshot with logs messages of the containers corresponding to: a) Orchestrator 

Engine; b) IDDM.  

 

 
Figure 40. Snapshot of the SQLite GUI showing the IDDM information stored 

When the OE receives enough information to process the new request, including some infor-
mation sent by CEDM and NODM, the OE starts processing the information to instantiate a 
network slice containing the necessary NSs for the drone and the car. These NSs, are associ-
ated with one or several VNF images, also including resource information like RAM, VCPU 
and Storage to be consumed by the VNFs. As can be seen in Figure 41, this mapping be-
tween the NSs and VNFs is stored in the cache DB (and managed by the Engine Manger), 
this information can be obtained via the μS/FC registry and repository FCs. In our experiment, 
this functionality is modelled by the internal registries of OpenStack, as we will see later in this 
section. 
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Figure 41. VNF internal mapping to associated to the NSs in OE cache DB. 

Once the information regarding VNFs for every NS is extracted, the next step is to prepare 
the necessary descriptors to translate the information received by the FCs, to a Data model 
understood by OSM (ETSI SOL006). Three types of descriptors are generated, including VNF 
descriptors (VNFD), network service descriptors (NSD) and network slice templates (NST).  

 
Figure 42. Examples of some of the generated descriptors of: a) network slice (NST), b) network ser-

vice (NSD) and c) VNF (VNFD). 
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An example of each type of descriptors can be seen in Figure 42, showing the hierarchy of 
each one, from the NST relating the NS, to the car VNF specifying the needed image and 
computational resources. Focusing on the VNF descriptor, we can see that the resources 
requested in the VNF table in Figure 41 the first row are mapped to the corresponding fields 
in the descriptor. There we can appreciate corresponding metrics to model the RAM, VCPU, 
storage and also the VNF image name is also available, which in this particular case is a very 
lightweight version of Linux called cirrOS with some basic functionalities. Furthermore, a con-
figuration file is created to map the multi-site information received by the FCs, making it pos-
sible to instantiate different NS that belongs to the same network slice in different VIMs.  

Once the descriptors are generated, they are onboarded into OSM by the OE, after which it 
commands OSM to instantiate the required slice. These actions are executed via the OSM 
Client implemented in the OE. Figure 43 shows the NST001 network slice successfully running 
in OSM. More information about the network slice instance is presented in D4.2. 

 

 
Figure 43. Snapshot of OSM with the network slice instantiated commanded by the Orchestrator En-

gine  

As for the computational resources consumed associated with this network slice instance 
(NST001), the key elements are the VNFs, in turn 3 different VNFs, two instantiated in the car 
VIM and one in the drone VIM. In Figure 44, the different requirements that were previously 
established in Figure 42c, have been successfully captured in the VNF instance.  

 
Figure 44. VNF instance in car VIM (OpenStack) indicating the requirements (RAM, VCPU and Disk). 

As can be seen in Figure 45, one VNF instance of cirrOS is running in the (emulated) drone 
VIM with IP 192.168.137.101, which represents the drone VIM. For the car NS, two VNFs with 
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cirrOS are deployed in the car node, with IP 192.168.137.11, accomplishing the target of a 
multi-site network deployment commanded by the DEDICAT6G platform.  

 

 
Figure 45. Snapshot of the nodes (OpenStack) with the VNFs’ instances up and running    

3.3.4 Conclusions 
As we have shown in this work, the provision of network slices has an impact on the manage-
ment of the computational resources available in a 5G/B5G system, especially critical in the 
edge domain, and in turn, on the distribution of intelligence. Considering this fact, the DEDI-
CAT6G project is working to cover it and provide optimization when needed, precisely the 
orchestration engine is the one in charge of such role.  

One of the main insights of this orchestration engine is that its cloud-based design and mi-
croservices-based implementation permits its deployment in multiple B5G/6G scenarios 
thanks to its potential high availability, scalability and distributed manner. In the future, we 
will be able to test these capabilities by extending our work to take on new proof-of-con-
cepts where the orchestration engine can be scaled in/out according to scenario require-
ments, deployed on multiple nodes, and creating multiple replicas to improve its availability 
and resilience. 
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Additionally, it is expected to extend the functionalities offered by the OE to assist the de-
ployment of vertical apps and other FCs instance on edge nodes using the Kubernetes inter-
face and command it, as Edge Orchestrator.  
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4 Security and Trust 
In order to monitor security threats and establish secure and privacy-preserving AI/ML training 
and inference, a framework for secure data exchange must be set up. The DEDICAT 6G se-
curity and privacy protection framework is based on a decentralized, blockchain powered 
data marketplace for secure, automated monetization, processing and exchange of IoT 
sensors and digital assets data with technical and policy-based data verification.  

The framework's unique features for monetization and exchange of data between arbitrary 
interested parties are:  

 Private, permissioned Blockchain technology which provides network security, data in-
tegrity, smart contract for fast automated transactions and micropayments with a token 
economy.  

 Data verification, technical and policy-based through blockchain Smart Contracts and 
data hashing (anchoring). 

Data and algorithm providers, as well as data buyers and consumers, can use web or mobile 
app clients to communicate with the framework using specified API, while framework com-
ponents communicate internally using internal APIs and/or message brokers. Framework 
components include two domains:  

 Privacy preserving domain that relies on blockchain  
 AI domain that relies on tools for AI workflow management and workflow manage-

ment in general.  

All the internal components from both domains – services and its dependencies – are running 
in the private network and public entry points to them are strictly controlled by ingress con-
trollers and reverse-proxies 

4.1 Access, Authentication, and Authorization Management 
Access control, authentication, and authorization is achieved through Security Framework 
and Trust Management Platform. Architecture of the solution is explained in D2.4 and, for the 
sake of better understanding the complete flow, this document will share some parts with 
D2.4. Also, the entire WP5 (all the tasks in it) explains the Platform and provides detailed over-
view of its architecture and implementation, so some content will be shared with D5.1 and 
D5.2. We will focus on architecture and deployment and address scalability and integration 
with the orchestration engine. Authentication, authorization, and access control will be ad-
dressed in that respective order. 

The access control flow is designed in such a way as to provide a scalable solution and quick 
and easy integration of new services. There are multiple ways to include access control calls 
to the new service. The least intrusive approach that does not require code changes is at the 
deployment level. A sidecar container can be deployed alongside the new service that will 
intercept all the requests and authorize them. The other option is direct integration with the 
Framework. While authentication, authorization, and access control represent different FCs, 
implementation-wise only one remote procedure call (RPC) request is necessary for the inte-
gration. Detailed explanation of the flow and architecture can be found in D2.4. The figure 
below shows the integration of the new service into the Platform. 
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Figure 46. Integration of the new service with the existing access control flow  

4.1.1 Authentication 
Authentication is the process of determining a participant’s identity in the system. The Frame-
work relies on token-based authentication - which means that the client’s identity data is 
encoded in the self-contained token that is exchanged with each request. The system's au-
thentication is by its nature stateless - anyone with the correct token can be authenticated 
successfully and all the data necessary for the process is encoded in the token. Implemen-
tation-wise, the default token is JSON Web Token (JWT) with a short expiration time. Once 
JWT is expired, the refresh token needs to be used to issue a new JWT. Refresh tokens, unlike 
access tokens, are stored in the can be revoked. Refresh tokens can be used only once. For 
HTTP requests, the token is embedded in the HTTP request headers. 

Authentication solution is, however, developed with constrained devices in mind. In some 
cases, IoT devices are rather low power and low energy which means that exchanging a 
large JWT with each request is simply too heavy for them. Also, in some cases, those devices 
do not even use the request-response model of communication, but rather publish-subscribe 
or even fire and forget models. The Framework is structured in such a way that it supports 
those constrained devices by design. This means that the token type can easily be replaced 
with a proprietary, simpler, and less secure token if needed. Currently, there is ongoing work 
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in the WP5 on the support for the MQTT protocol which will be using a publish-subscribe model 
of communication. 

4.1.2 Authorization 
Authorization connects access control policies to the identity that is resolved in the authen-
tication process and evaluates those rules against it. There are a couple of simple general 
rules in the approach to authentication, authorization, and access control:  

 Each interaction with external entities needs to be authorized.  
 When assigning access control rules, use the Principle of least privilege (PoLP).  
 All the networking, internal and external, needs to be secured via TLS.  
 Access control evaluation must be quick. 

Since authentication, authorization, and access control are three stages of the single flow 
and are by nature inseparable, some of these steps are applicable across all of them. 

The first rule imposes that all the interactions, even those that essentially do not require au-
thorization (such as health check endpoints) need to go through the authorization flow. The 
reason for this is the simplification of the process and providing necessary logging and future-
proof support. The second rule is enforced by design, but it is really the administrator’s re-
sponsibility to respect it. It means that all the clients have only the minimum privileges neces-
sary to perform the given action. By default, almost all the actions are forbidden, except for 
logging in and fetching its own data. The third rule imposes using the active best practices 
for network protection of the data in transit - TLS by default and mutual TLS as an even more 
secure solution. Mutual TLS is not set by default because the certificate and key distribution 
for all the clients is simply not viable for large-scale deployment with general-purpose clients. 
The fourth rule is loosely defined on purpose. The exact acceptance criteria have not been 
yet developed to strictly define the limits and would be a useful contribution to WP7. The 
problem with strict criteria is the versatility of use cases and client types that all have different 
tolerance to latency. Experience from Nokia Data Marketplace (NDM) that is used as a ref-
erence when developing the Framework witnesses it should be in the 200ms range. However, 
since the Framework includes more machine-to-machine (M2M) communication, some 
parts of it can tolerate even greater latency. Others, such as real-time sensor data monitoring 
- cannot. 

4.1.3 Access control 
Access control is based on combined Role-based access control (RBAC) on the higher level 
and Attribute-based access control (ABAC) for fine-grained permission tuning. The policy de-
sign and implementation are rather simple, as well as policy evaluation against the given 
client for the provided action. Each client has a role assigned to it. The roles define rights for 
the client to set up policies for other clients over the resources in the system. Resources are 
called digital assets. Assets can be anything from dataset and algorithm to pictures, video, 
or NFT – the only requirement is that it has the URI. 

The policy consists of rules in the form of Subject-Action-Condition. The subject is the client 
attached to the policy, action is one from the list of predefined actions and condition is the 
condition under which the policy applies. The simplest condition is represented by simple key-
value pairs where the key is the name of the subject attribute, and the value is the expected 
value for that attribute - thus attribute-based access control. The conditions are generic by 
design and can incorporate more complex scenarios such as temporal or spatial constraints. 
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4.1.4 Audit logging and analysis 
Logging enables collection and secure storage of all types of logs across the DEDICAT 6G 
system (with main focus on security) and implements blockchain technology to ensure logs 
consistency and trustworthiness. 

 
Its main functions are: 

 Collection of logs (transactions, audit of sessions, reports) 
 Storage of trusted logs in a secure manner 
 Providing access to logs for authorized clients 

Trustworthiness metrics are calculated for edge nodes, processes, users and data streams. 
Trust metric value indicates if a node can join a local network, if process output can be further 
used, if a user can execute specific rule. Trust metrics are implemented as ML models whose 
outputs are written on private permissioned blockchain through dedicated smart contracts. 
This way all stakeholders in DEDICAT 6G instance have access to immutable record of trust 
metrics calculated for all actors, resources and processes. 

 

 
Figure 47. Logging data process on edge device 

The algorithms used for logged data analysis in our test lab environment are Decision tree 
and Random forest. Each of these algorithms is tried for two types of problems: for regression 
and for classification. In the case of classification, there are two classes: “Trust” and “Don’t 
trust”. Trust values above 0.5 are considered to belong to the “Trust” class and are assigned 
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a value of 1, and values below or equal to 0.5 are considered as members of the “Don’t 
trust” class and are assigned a value of 0. 

4.2  Network and data security, Cryptography, and key man-
agement 

While the privacy and protection framework that is under construction in WP5 is mostly fo-
cused on innovative approaches of a combination of trust management using blockchain 
technologies and extensible fine-grained access control, it is also using the best practices 
when it comes to securing data in transit. As has already been mentioned, all communica-
tion between all the services is secured using TLS. Also, the Platform is extensible for supporting 
mutual TLS. Problems with certificate distribution, key rotation, and device secure bootstrap-
ping are not addressed yet. The other preferred practices for securing sensitive data are im-
plemented some of them being hash and salt for users’ passwords, account lock on subse-
quent unsuccessful login attempts, short-lived access tokens signed with cryptographically 
strong algorithm and key, and load balancer set up to prevent distributed denial-of-service 
(DDoS) attacks… Fine-tuning of the load balancer and REST API is done by security experts 
to improve safety and lower the risks of exploiting any sensitive information. Also, logging and 
collecting sensitive user data is prevented by using only internal unique user identifiers in logs, 
rather than sensitive information such as the user’s email address. 

All these measures, alongside the aforementioned approach to access control and integra-
tion with blockchain for trust support provide a very robust, yet scalable and reliable security 
framework that is easy to integrate, monitor, and use. 



D3.2 Second release of mechanisms for dynamic distribution of intelligence        

 DEDICAT 6G - ICT-52-2020 – G.A:101016499                78 

5 Conclusions 
The DEDICAT 6G project has defined a set of global objectives, among which: 

 To provide imperceptible end-to-end latency and response time, with a minimal en-
ergy and resource consumption in B5G networks for the support of innovative appli-
cations 

 Reinforce security, privacy and trust in B5G systems in support of advanced IoT appli-
cations 

 Develop human-centric applications and showcase novel interaction between hu-
mans and digital systems 

These three objectives are at the core of the work performed in WP3. These objectives can 
only be achieved by combining both computation and communications capabilities of the 
whole network: core, edge, access, and even terminals. However, in 5G, it is lacking a unified 
platform that can leverage infrastructure programmability and AI techniques to meet the 
most stringent requirements of services. 

This document has presented the work achieved so far in WP3. First, a description of several 
algorithms for Distribution of Intelligence was given, along with experimental results that were 
collected. Next, a detailed description of low-level architectural techniques was given, as 
well as the design of the orchestration engine. Finally, an overview of the security issues and 
how they are tackled is given. 

In the next work period, the work will be refined and implemented in Proof-of-Concept pro-
totypes. In addition, the work on architectural techniques will be continued, expanded to 
machine, cloudlet and edge region levels, and implemented in a prototype. These proto-
types will then later on be integrated in the pilots defined in WP6. 
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