
D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 1

DEDICAT 6G: Dynamic coverage Extension and
Distributed Intelligence for human Centric Appli-
cations with assured security, privacy and Trust:

from 5G to 6G

Deliverable D3.1
First Release of Mechanisms for Dynamic

Distribution of Intelligence

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 2

Project Details

Call H2020-ICT-52-2020

Type of Action RIA

Project start date 01/01/2021

Duration 36 months

GA No 101016499

Deliverable Details

Deliverable WP: WP3 (Mechanisms for supporting dynamic distri-
bution of intelligence)

Deliverable Task: Task T3.1 (Architectural techniques for supporting
dynamic, optimal placement of intelligence)
and T3.2 (Intelligence placement optimization)

Deliverable Identifier: DEDICAT6G_D3.1

Deliverable Title: First Release of Mechanisms for Dynamic
Distribution of Intelligence

Editor(s): Y. Carlinet (Orange)

Author(s): A. Anttonen (VTT), Y. Carlinet (Orange), P. Demes-
tichas (WINGS), F. Díaz (ATOS), M. Forsell (VTT), V.
Lamprousi (WINGS), J. Moreno (ATOS), K. Mößner
(TUC), S. Penjivrag (VLF), N. Perrot (Orange), P.
Reiter (IMEC), D. Ribar (Airbus), V. Stavroulaki
(WINGS), L. Valeyre (Orange)

Reviewer(s): H. Cesar Carvalho de Resende (IMEC), R. Eycker-
man (IMEC), D. Hadiwardoyo (IMEC), J. Mäkelä
(VTT), V. Stavroulaki (WINGS), M. Uitto (VTT)

Contractual Date of
Delivery:

31/12/2021

Submission Date: 22/12/2021

Dissemination Level: PU

Status: Final

Version: v1.0

File Name: DEDICAT6G_D3.1 Mechanisms for dynamic distri-
bution of Intelligence_v1.0.doc

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 3

Disclaimer

The information and views set out in this deliverable are those of the au-
thor(s) and do not necessarily reflect the official opinion of the European
Union. Neither the European Union institutions and bodies nor any person
acting on their behalf may be held responsible for the use which may be
made of the information contained therein.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 4

Deliverable History

Version Date Modification

V1.0 22/12/2021 Final version, submitted to EC through SyGMa

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 5

Table of Content

LIST OF ACRONYMS AND ABBREVIATIONS ... 7

LIST OF FIGURES ... 11

LIST OF TABLES ... 12

EXECUTIVE SUMMARY .. 13

1 INTRODUCTION .. 14

1.1 SCOPE ... 14
1.2 DOCUMENT STRUCTURE .. 14

2 ARCHITECTURE OVERVIEW .. 15

2.1 INTRODUCTION .. 15
2.2 DEFINITION OF INTELLIGENCE ... 15
2.3 SECURITY ISSUES ... 15
2.4 KEY PERFORMANCE INDICATORS ... 17
2.5 DEDICAT 6G NETWORKED COMPUTING APPROACH .. 19
2.6 FUNCTIONAL COMPONENTS SPECIFIC TO WP3 .. 21

2.6.1 Intelligence Distribution FG Components .. 22
2.6.2 Context-Awareness FG Components .. 23
2.6.3 Analytics FG Components .. 24
2.6.4 Decision-Making FG Components ... 24
2.6.5 Service Operation FG Components .. 25

3 STATE-OF-THE-ART .. 26

3.1 INTELLIGENCE DISTRIBUTION ALGORITHMS ... 26
3.1.1 Centralized Algorithms ... 26
3.1.2 Distributed Algorithms .. 27
3.1.3 Progress beyond the state-of-the-art ... 27

3.2 TECHNOLOGIES AND FRAMEWORKS ... 27
3.2.1 Kubernetes .. 28
3.2.2 Crossplane.io .. 28
3.2.3 Rancher ... 28
3.2.4 Kubefed ... 28
3.2.5 Anthos .. 29
3.2.6 NFV Orchestration .. 29

4 ALGORITHMS FOR DISTRIBUTION OF INTELLIGENCE .. 31

4.1 PLACEMENT OF INTELLIGENCE ... 31
4.1.1 Problem Statement .. 31
4.1.2 Problem Formulation .. 32
4.1.3 Execution Environment / Deployment ... 34

4.2 PLACEMENT OF SERVICES IN SMART WAREHOUSE ... 34
4.2.1 Problem statement ... 34
4.2.2 Problem Formulation .. 36

4.3 PLACEMENT OPTIMIZATION IN SMART HIGHWAY .. 37
4.3.1 Multi-Objective Optimization .. 37
4.3.2 Multi-Objective Reinforcement Learning .. 38
4.3.3 Centralized Optimization ... 39
4.3.4 Distributed Optimization .. 40
4.3.5 Placement Methodology .. 40
4.3.6 Orchestrator .. 41
4.3.7 Link Optimization Methodology ... 41

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 6

4.3.8 Intelligence Migration .. 42

5 ARCHITECTURAL TECHNIQUES FOR DISTRIBUTION OF INTELLIGENCE ... 48

5.1 HIERARCHICAL ARCHITECTURES FOR DISTRIBUTED COMPUTING ... 49
5.2 TECHNIQUES .. 51
5.3 EXPERIMENTAL RESULTS ... 55

6 CONCLUSIONS ... 59

REFERENCES ... 60

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 7

List of Acronyms and Abbreviations

Acronym/Abbreviation Definition

AAA Authentication Authorization Accounting

ACL Access Control List

AGV Automated Guided Vehicle

AI Artificial Intelligence

AMF Access Mobility Function

AP Access Point

API Application Programming Interface

AR Augmented Reality

B5G Beyond 5G

BLE Bluetooth Low Energy

BLEMAT Bluetooth Low Energy Micro-location Asset Tracking

BS Base Station

CFS Customer Facing Service

CISC Complex Instruction Set Computer

CLI Command-Line Interface

CPU Central Processing Unit

C-RAN Cloud Radio Access Network

CU Control Unit

D2D Device-to-Device

DA Distributed Agents

DDoS Distributed Denial of Service

DNS Domain Name Service

DoI Distribution of Intelligence

DoS Denial of Service

DU Distributed Unit

DVFS Dynamic Voltage and Frequency Scaling

E2E End-to-End

EC Edge Computing

EMS (Network) Element Manager System

EN Edge Node

eNB e(volved) NodeB (a.k.a. E-UTRAN NodeB)

ESM Emulated Shared Memory

ETSI European Telecommunications Standards Institute

FC Functional Component

FCAPS Fault/Configuration/Audit/Performance/Security

FE Functional Entity

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 8

FG Functional Group

FL Federated Learning

FLOPS FLoating OPeration per Second

GDPR General Data Protection Regulation

GKE Google Kubernetes Engine

gNB (next)g(eneration)NodeB (replaces 4G eNB)

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPU Graphical Processing Unit

GUI Graphical User Interface

HE Hosting Entity

HMI Human Machine Interface

IDaaS Intelligence Distribution as a Service

IDDM Intelligence Distribution Decision Making

IEEE Institute of Electrical and Electronics Engineers

IMS IP Multimedia Sub-system

IoT Internet of Things

IoV Internet of Vehicle

ISG Industry Specification Group

JSON Java-Script Object Notation

K3S Lightweight Kubernetes

K8S Kubernetes

KPI Key Performance Indicator

LAN Local Area Network

LCM Life Cycle Management

LDM Local Dynamic Map

LOS Line of Sight

LTE Long-Term-Evolution

MA Mobile Assets

MAC Medium Access Control

MANO Management Network Orchestration

MAP Mobile Access Point

MC-PTT Mission Critical Push-To-Talk

MCS Mission Critical Service

MCV Manned Connected Car

MCX Mission Critical {PTT, Video, Data Services}

MEC Mobile Edge Computing

MEP Multi-Access Edge Computing Platform

MEPM Multi-Access Edge Computing Platform Manager

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 9

MIMD Multiple Instruction Multiple Data

MIMO Multiple-Input Multiple-Output

ML Machine Learning

MME Mobility Management Entity

MOO Multi-Objective Optimization

MORL Multi-Objective Reinforcement Learning

NFV Network Virtualization Function

NFV-I NFV Infrastructure

NFV-O NFV Orchestrator

NG-RAN Next Generation RAN

NLOS Non-Line of Sight

NP Non-Polynomial

NSSAI Network Slice Selection Assistance Information

NSSF Network Slice Selection Function

OBU On-Board Unit

OS Operating System

OSM Open Source MANO

PCF Policy Control Function

PDCP Packet Data Convergence Protocol

PDU Protocol Data Unit

PFCP Packet Forwarding Control Packet

PHY PHYsical layer

PLMN Public Land Mobile Network

PoP Point of Presence

PPDR Public Protection and Disaster Relief

PST Privacy, Security & Trust

QCI QoS Class Identifier

QoE Quality of Experience

QoS Quality of Service

RAM Random Access Memory

RAN Radio Access Network

RAT Radio Access Technology

RDF Resource Description Format

REST Representation State Transfer

RF Radio Frequency

RISC Reduced Instruction Set Computer

RKE Rancher Kubernetes Engine

RLC Radio Link Control

RPC Remote Procedure Call

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 10

RRC Radio Resource Control

RSS RDF Site Summary

RSU Road Side Unit

RTT Round Trip Time

RU Radio Unit

SIMD Single Instruction Multiple Data

SLA Service Level Agreement

SMF Session Mobility Function

SNR Signal-to-Noise Ratio

SOTA State Of The Art

SPP Security and Privacy Protection

SSL Secured Socket Layer

TCF Thick Control Flow

ToC Table of Content

TPU Tensor processing unit

TSL Transport Layer Security

UAV Unmanned Aerial Vehicle

UC Use-Case

UDR Unified Data Repository

UE User Equipment (e.g., mobile phone)

UML Unified Modelling Language

UPF User Plane Function

URLLC Ultra-Reliable Low Latency Communication

V2X Vehicle to X

V2V Vehicle to Vehicle

VANET Vehicular Ad-hoc Networks

VEC Virtual Environment Control

VIM Virtual Infrastructure Manager

VM Virtual Machine

VN Vehicular Node

VNF Virtual Network Function

vRAN Virtual Radio Access Network

VRU Vulnerable Road User

WMS Warehouse Management System

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 11

List of Figures

Figure 1: Security and trust logic ... 16

Figure 2: Networked computing framework in WP3 ... 20

Figure 3: Functional Architecture of the DEDICAT 6G ecosystem applied to Intelligence
Distribution ... 22

Figure 4: ETSI MEC and ETSI NFV standards interoperation .. 29

Figure 5: DEDICAT 6G Intelligence Distribution assistance with NFV capabilities 31

Figure 6: Illustration of users, edge cloud and cloud in the smart warehouse 35

Figure 7: Example of VRU, RSU, and vehicle on the road .. 42

Figure 8: Structure for V2I communications consists of RSUs, Cloud Server, VRUs, and Vehicles
 .. 43

Figure 9: Example of data format transmitted in V2I .. 44

Figure 10: Placement problem of RSUs .. 45

Figure 11: Model of RSU's field of view ... 46

Figure 12: Architectural techniques for distributed computing at different levels 49

Figure 13: Patterns of computation and communication ... 52

Figure 14: Execution time of blocked version of the memcopy benchmark (log scale) 56

Figure 15: Relative performance of a multioperation reduction as a funct. of the input data
array size .. 57

Figure 16: Parallel matrix addition algorithm for Intel CPUs and an ESM machine 57

Figure 17: Execution time of matched parallel and blocked versions of the memcopy
benchmark (log scale) .. 58

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 12

List of Tables

Table 1: List of general security requirements .. 16

Table 2: Intelligence Functions Placement notations ... 33

Table 3: Notations for the placement of services in Smart Warehouse.................................... 36

Table 4: Example of exchanged information for UC4 in JSON format 44

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 13

Executive Summary

The specific goals of WP3 (Mechanisms for supporting dynamic distribution of intelligence)
include (T3.1) architectural techniques for supporting offloading, migration and distribution
of computing and communication on processor, storage, and network levels, (T3.2) algo-
rithms for migration and distribution of intelligence, and (T3.3) validation of the mechanisms
for computation placement optimization also related to the high-level architecture and sce-
narios/use cases defined in WP2 and carried out in WP6, respectively.

This document is the first instalment of a series of three, describing the achievements in WP3.
These achievements follow three dimensions:

1. Architecture overview (section 2).

In order to fulfill the objectives of the project, the DEDICAT 6G platform must enable imper-
ceptible end-to-end latency. To this end, it is necessary to move service and network intelli-
gence closer to the end-users. In consequence, intelligence must be distributed towards the
edge network, and in order to enable minimal resource consumption, it will be necessary to
migrate services sometimes.

Security requirements are listed, and in order to meet them, the project will design and im-
plement a blockchain technology (to build trust between devices and nodes), data flows
with privacy, and data analytics techniques (for automated security audits).

The Key Performance Indicators (KPIs) measured in the project include Quality of Service
(QoS) parameters, such as latency, throughput, and also other parameters like energy or
service reliability.

Following up on D2.2 [13] (Initial System Architecture), the key components related to WP3
are identified, and described in detail.

2. Algorithms for Distribution of Intelligence (section 4)

The project will design and implement algorithms for the placement of intelligence (i.e. func-
tional entities) while optimizing a given KPI, usable for all four use-cases.

We will also consider the particular case of Smart Warehousing, in which a given KPI is opti-
mized, while considering a delay proportional to the load on the links. And in the Smart High-
way use-case, in which the placement algorithm can be centralized or decentralized, the
problem of Road Side Units (RSU) placement is modelled as a coverage problem.

3. Architectural techniques for Distribution of Intelligence (section 5)

Finally, we also study architectural techniques for context switching, patterns of computation
and communication, load balancing, movement of threads, reducing the state of compu-
tation, synchronization, programmability and placement of functionality. Early experimenta-
tions are conducted at the processor and server level.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 14

1 Introduction
The general objective of WP3 is to support dynamic, optimal placement of intelligence
(data, computation, storage) in heterogeneous B5G/6G networks with respect to Key Perfor-
mance Indicators e.g. service creation time, latency and reliability, overall energy consump-
tion and security.

The main incentive is to enable reliable service continuity with the target user mobility and
given network and computation resources for the DEDICAT 6G use cases and system archi-
tecture defined in WP2.

Techniques for dynamic distribution of data, computation, and storage in B5G/6G networks
are developed, and algorithms for the overall optimization task are formulated to support
extended dynamic coverage (WP4) and services of WP6. Understanding the trade-offs be-
tween computation and communications is essential in the underlying concepts. While the
developed solutions are initially evaluated and tested in this work package, practical as-
pects of them are integrated in the use case pilots in WP6.

1.1 Scope

The scope of this deliverable is to describe the achievements so far on the Mechanisms for
Dynamic Distribution of Intelligence. The work described in this document is preliminary as
the final outcomes of the work will be detailed in the next upcoming deliverables This docu-
ment is the first iteration out of the three planned over a period of 18 months.

1.2 Document Structure

This document presents, in Section 2, the architecture of the DEDICAT 6G system, with a par-
ticular focus on the elements related to WP3. This section also gives a definition of the term
‘intelligence’, in order to define better the scope of the work in this work package. There is
also a description of security issues and the Key Performance Indicators that will be measured
in order to assess the feasibility of the taken approaches. Finally, Section 2 also provides an
introduction to the networked computing approach that will be studied in the project.

Section 3 gives an overview of the State-of-Art for the intelligence distribution algorithms. It
also lists the most mature technologies for intelligence distribution, which could potentially
be used as a building block for the development of the pilots.

Section 4 details the work achieved so far on the design of the algorithms for intelligence
distribution, in the general case, and also in the particular cases of some use-cases defined
in DEDICAT 6G.

Section 5 provides the work performed on architectural techniques for distribution of intelli-
gence. In particular, the following techniques are studied: efficient context switching, pat-
terns of computation and communication, e.g., multicasting, load balancing, movement of
threads, support for keeping the state of the computation simple as well as efficient compu-
tation management.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 15

2 Architecture Overview

2.1 Introduction

The DEDICAT 6G project has defined a set of global objectives, among which:

 To provide imperceptible end-to-end latency and response time, with a minimal en-
ergy and resource consumption in B5G networks for the support of innovative appli-
cations

 Reinforce security, privacy and trust in B5G systems in support of advanced IoT appli-
cations

 Develop human-centric applications and showcase novel interaction between hu-
mans and digital systems

These three objectives are at the core of the work performed in WP3. Indeed, in order to
enable imperceptible end-to-end latency it is necessary to move service and network intel-
ligence closer to the end-users. In consequence, intelligence must be distributed towards the
edge network, and in order to enable minimal resource consumption, it must be migrated
when necessary.

2.2 Definition of Intelligence

In the context of the DEDICAT 6G project, the term ‘Intelligence’ refers to two main concepts.

Firstly, Intelligence represents micro-services, which can be chained in order to provide a
service to end-users. For instance, in UC4, the road user awareness is done through Service
Level Agreement (SLA) Management and sensor post-processing. The intelligence of the sys-
tem is Local Dynamic Map (caching) -- shared world view. Central LDM is on cloud, distrib-
uted to MECs edge RSUs. Intelligence distribution is a combination of task offloading and
caching.

Secondly, Intelligence can refer to Virtual Network Functions (VNFs). VNFs are usually run in
Virtual Machines (VMs), and they can be chained to provide network services, such as virtual
Radio Access Network (vRAN) or virtual Evolved Packet Core (vEPC).

Finally, it should be noted that Intelligence also encompasses the set of Functional Compo-
nents (FCs) of the DEDICAT 6G platform architecture itself. They are actually micro-services,
which can be deployed or migrated in the same way as other micro-services.

2.3 Security Issues

The project will implement mechanisms and tools for improving security, privacy, and trust in
the scope of IoT applications supported over B5G/6G networks, as illustrated in Figure 1.

Such mechanisms and tools will include:

 functionality for controlling data flow in terms of privacy and confidentiality
 cutting edge blockchain technology for building trust between devices and nodes

with automated compliance tests, automated auditing and immutable record for key
trust parameters

 AI and data analytics for the timely detection and forecasting of security, privacy and
trust threats and for ensuring resilience. This will be based on federated learning mech-
anism for the highest level of privacy and data protection.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 16

Figure 1: Security and trust logic

Security requirements will be associated with the security features. Requirements must be
implemented early in the development phase and the appropriate security features are
mounted on the devices themselves.

Table 1: List of general security requirements

Security Requirement Description

Access, Authentication, and Authorization Man-
agement

Authenticate users through central authentication/au-
thorization (AuthN/AuthZ) systems, grant the minimum,
sufficient access, or privileges, employ role-based ac-
cess controls, access sensitive data only as necessary for
job duties, encrypt authentication and authorization
mechanisms

Audit logging and analysis Enable logging for endpoints, include essential events
and elements in logs, restrict log access to authorized in-
dividuals, automate alerting on logging failures

Cryptography and key management Protect digital assets and communications, implement
GDPR, user/role access to the encryption keys

Network and data security Implement default-deny, least-privilege policies on net-
work devices, encrypt network traffic, securely configure
network infrastructure devices

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 17

Code integrity Validate the integrity of a component/driver or system
file each time it is loaded into device memory, encrypt
external transmission of data, Implement application
logs with important event data

Data validation and sanitization Validate on Input - ensuring that incoming data is un-
compromised before it is allowed to be processed, san-
itize device/storage media before transfer, ensure sani-
tization methods meet the standard's requirements

2.4 Key Performance Indicators

This sub-section outlines some Key Performance Indicators that are linked to the intelligence
distribution mechanisms. Corresponding measurements will be collected during the pilots via
tools such as: (i) ping, a software tool which measures the network layer Round Trip Time (RTT)
for messages sent from one machine to another machine; (ii) iPerf an open source, multi-
platform and freely available tool which can be used to measure network bandwidth, jitter
and packet loss; (iii) custom measurements through software, etc.

Latency

The aim is to achieve decreased latency (incl. mean delay and delay jitter) via intelligence
distribution mechanisms by up to a factor of 10 in congested and fault situations in order to
improve quality of experience of multimedia applications. For 4G system, the target user
plane latency (RTT) and control plane latencies (idle-to-active time) are, respectively, 20ms
and 100ms, while 5G systems should lead to 1ms and 10ms for the corresponding latencies
[14]. Often, these requirements are still not met in practical networks with high traffic density.

Validation methodology: Measurements will be collected at the application layer by adding
timestamps to requests between functional entities/service components of an overall ser-
vice. Then the difference in time will be calculated between the request from one entity
(e.g., client) and the response from the other entity (e.g., server). Jitter measurements will
also be collected e.g., with the use of iPerf.

Energy

The aim is to decrease energy consumption (incl. communication and computation) via in-
telligence distribution mechanisms by at least a factor of 10 in order to increase the operation
lifetime of a mobile station or server. A typical measure of energy efficiency is the number of
transmitted bits per Joule (bit/J), and it is subject to various systems assumptions. A theoretical
physical upper limit is around 1 Pbit/J while typical 4G systems lead to a level of 10 Kbit/J and
5G systems to a level of 10 Mbit/J [15]. Other measures can also be found, depending on the
system assumptions.

Validation methodology: The battery level of involved mobile nodes (e.g., phones, laptops,
robots) will be measured with and without the use of intelligence distribution mechanisms for
certain services/applications. The power consumption of involved servers may also be meas-
ured or at least estimated using various ways ranging from cheap watt hour meters for on

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 18

premises servers to estimation of FLOPs (Floating Point Operations)1,2.

Mission Critical Services QoS

The ETSI has released the Technical Specification 122 179 in 2020 [16] which defines indicators
about quality and availability of the network used by 3GPP clients. The MCX mobile applica-
tion (3GPP client) will use the network connectivity extended by the DEDICAT 6G platform in
the context of loss of network of the use case UC3. The quality and availability of the Intelli-
gent Distributed Coverage Extension brought by DEDICAT 6G shall not be regressed accord-
ingly to the standard. The MC Audio Functional Component shall address the 4 main indica-
tors defined in the standard:

- Provide MC-PTT (Mission Critical Push-To-Talk) access time less than 300 ms for 95% of
all requests;

- The end-to-end MC-PTT access time less than 1000 ms for all MCX mobile application
under the same network coverage;

- The mouth-to-ear latency less than 300 ms for 95% of all voice bursts;
- The maximum late call entry time shall be 150 ms for 95% of all late call request.

The indicators related to IP and data transmissions (MC Data or MC Video Functional Com-
ponents shall be as following):

- The end-to-end Delay, which is the time, required for IP packets to be transmitted shall
be less than 10 ms;

- The User Data Rate shall be 100 Mbps in downlink and 50 Mbps in uplink;
- The Reliability indicator of the DEDICAT 6G shall be at least 99.999% of success for the

transmission of a packet of 32 bytes within 1ms.

Validation methodology: The indicators related to voice connectivity and transmission (MC-
PTT) will be measured by using the MCX Mobile application using DEDICAT 6G platform. The
indicators related to IP data will be measured by the use of a test application.

The results will be compared with the measures done with the use of MCS application in a
nominal environment (without DEDICAT 6G platform) based on a 5G networks.

Throughput

Some services (e.g. augmented reality) require a high throughput in addition to low latency.

Validation methodology: Throughput can easily be obtained from the video renderer soft-
ware.

Service reliability (application layer)

Service reliability can be defined as the success probability of transmitting a layer 2/3 packet
within a maximum latency required by the targeted service (ITU-R M.2410, cf. [17]). With the
use of intelligence distribution mechanisms this should either improve or at least remain the
same as the baseline.

Validation methodology: The packet error rate at the application layer (packets that arrive
delayed or erroneous are considered as lost packets) will be measured.

1https://devblogs.microsoft.com/sustainable-software/how-to-measure-the-power-consumption-of-your-
backend-service/

2 Schwartz, Roy, Jesse Dodge, Noah Smith and Oren Etzioni. “Green AI.” Communications of the ACM 63 (2020):
54 - 63.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 19

2.5 DEDICAT 6G Networked Computing Approach

The core in the distribution of intelligence (DoI) in WP3 is the ability to comprehend where the
DoI-enabling computation should take place given the network state defined via a target
system parameter set. Since there are a number of things to be considered, different optimi-
zation objectives can be formulated. In this section, the purpose is to collect the main affect-
ing features and elaborate their different interrelationships as a whole. More detailed de-
scriptions of specific design objectives are then provided in Section 5. In the following, we
divide the required activities roughly into five different categories. These are further illustrated
in Figure 2.

Incentives for DoI: Different DEDICAT 6G use cases, which provide a specific need for the
DoI, have been analysed in D2.2 [13]. While a detailed stimulus may change depending on
the application, the reasons for using the DoI across the use cases are typically three-fold,
namely user device overloading, service remoteness, or server congestion. The avoidance
of these events via sophisticated DoI evidently lead to decreased service delay, usability or
system energy efficiency. In general, the triggering for the need of the DoI can be initiated
either by a user or network operator.

Architectural designs: The architectural design aspects can be addressed at different ab-
straction levels. At the top level, the network topology architecture to ensure end-to-end
connectivity is a dominating activity. At the middle level groups of edge servers form regions
within which regional computational load balancing strategies can be applied. At the bot-
tom level, server processing architecture (computer, processor, interconnect, memory, stor-
age and input/output dimensions) is defined. The bottom level solutions should also make
possible efficient application of upper levels. The fourth important element is the applied
centralization degree of the decision-making control structure. The centralization degree
may vary form fully centralized control to fully decentralized control with a number of hybrid
solutions, e.g., regional control, in between. The actual implementation of the DoI architec-
ture can be done, e.g., via specific container structures or virtual (distributed) machines.

System state monitoring: An important part of the DoI concept is to enable to monitor the
system state that is specific with the target system parameter set. While the higher cardinality
and estimation frequency of the parameter set lead to better accuracy, the complexity of
subsequent decision-making tasks may increase exponentially. Therefore, some trade-offs
must be made between the state monitoring accuracy and complexity. This is especially true
for the large system scenarios that need to support high scalability regarding the users and
interrelated servers. The system state may refer to network and server loads which change
due to user mobility as well as service state which refers to the running state of an application
that is important for service continuity if the service location is changed at runtime. The sys-
tem state may also refer to the past, present, or future state of the system. These functionali-
ties are found in the Context Awareness and Analytics Functional Groups, as described in
the next Section (2.6).

Resource allocation: While the output of the resource allocation typically includes the user
scheduling decisions, it involves a number of things affecting the allocation. The resource
allocation should provide sufficient QoS levels for possibly heterogeneous users that may ex-
ecute different applications within a target region of interest. The resources should be allo-
cated so that the interference between different transmitting nodes is sufficiently mitigated.
Finally, the resources should be allocated so that the load across the network is not too im-
balanced while respecting given user fairness and prioritization targets. At lower levels,
sources for interference include dynamic voltage frequency scaling (DVFS), dependencies
between execution units, operating system scheduler, memory access/intercommunication

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 20

patterns, lack of bandwidth, out-of-order/speculative execution and processor pipeline haz-
ards. These functionalities are found in the Service Orchestration Functional Group, as de-
scribed in the next Section (2.6).

Placement decisions: In the concept of DoI there are a number of placement decisions to
be made. One of the first tasks is to decide the physical server locations with network con-
nectivity capability. While some servers are pre-deployed and static, certain servers may be
mobile, introducing more flexibility for online. The next placement decision involves the
runtime connected server selection for each user task entering the region of interest. Obvi-
ously, this decision is highly dependent on the requested service requirements, prevailing sys-
tem state, and resource allocation situation to avoid overloading the servers and attached
network access points. Instead of completing a certain task within a single server, in some
cases cooperative computing involving multiple heterogeneous servers (e.g., work sharing,
work stealing schemes) may be beneficial for more efficient computing task scheduling. Fi-
nally, adjusting service locations in servers (aka service migration) may help to address the
consequences from dynamic network topology changes. Several things such as user-server
distances and service location change costs must be taking into account. The underlying
decisions call for an optimization procedure which may be based, e.g., on a rule-based ap-
proaches, model-based combinatorial optimization tools, or model-free machine learning
methods. These functionalities are found in the Decision-Making Functional Group, as de-
scribed in the next Section (2.6).

Figure 2: Networked computing framework in WP3

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 21

2.6 Functional components specific to WP3

The DEDICAT 6G functional model is composed by a group of core and transversal functional
groups (FGs) that encompasses a set of functional components belonging to a common
functional framework. Thus, according to D2.2 [13] the core DEDICAT 6G FGs are:

 Context-Awareness FG: provides a set of FCs that can provide the necessary infor-
mation to build concrete contexts that can be potentially used by the Decision-Mak-
ing FCs to take decisions according to such input in different levels.

 Decision Making FG: is responsible for making decisions on how to act on the corre-
sponding context stimulus by hosting the algorithmic to solve the key problems ad-
dressed in this project, such as network operation, coverage extension and intelli-
gence distribution. In this work, the focus is on the latter.

 Service Operation FG: oversees the implementation of the outcomes provided by the
Decision-Making FG related to services in general. These functionalities include or-
chestration of network services and microservices, load balancing and resource
management.

 Intelligence Distribution FG: is targeted to support the distribution of intelligence in the
system by hosting the necessary registries and repositories as well as other FCs aimed
at managing the MEC and SLA/policy procedures. WP3 is responsible for the defini-
tion and development of the FCs in this FG.

 Coverage Extension FG: comprises FCs that underpin dynamic coverage extension
such as the operation of swarm-based device mobility or connected cars operations.
This FG is entirely the responsibility of WP4.

 Analytics FG: monitors and analyses the DEDICAT 6G platform in general by using the
inputs provided by the Decision-Making and Context-Awareness FGs in order to in-
crease the overall performance of the system and some particular key FCs in other
FGs. Namely, network optimization/prediction or ML-based techniques to enhance
the performance of the platform.

Additionally, the three transversal FGs in DEDICAT 6G are able to interact with the rest of FGs
to support their operations:

 Management FG: hosts the corresponding functionalities to transversally manage the
DEDICAT 6G platform, like GUI interface, dashboard or deployment tracking.

 Communication FG: enables the FCs intercommunication in both the cloud and edge
side and to establish communication with external entities to interact of command
them when proceed.

 Privacy/Security/Trust FG: is focused to guarantee the security, privacy and trust re-
quirements in the platform.

This section aims to provide a general vision of only the functional components (FCs) defined, in the
first instance, in D2.2 [13], which are directly or indirectly related to dynamic intelligence distribution

operations, putting the light on the most relevant ones for WP3. Such FCs will be upgraded and
evolved during the execution of the project fed by a multi-directional interaction between WP2, WP3

and WP6.

Figure 3 represents a functional vision centered on Intelligence Distribution where vertical
applications are on top of the DEDICAT 6G platform to assist and command their connectiv-
ity and edge computing resources through the use of the legacy 5G network.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 22

Figure 3: Functional Architecture of the DEDICAT 6G ecosystem applied to Intelligence Distribution

2.6.1 Intelligence Distribution FG Components

These components offer the placeholder to compile the all the information, artifacts and
devices related to the services that are deployed by the verticals in the DEDICAT 6G plat-
form. It acts as the backend of the Dashboard FC, from where all nodes, software compo-
nents, service SLA and policies are managed. The Intelligent distribution functional group
serves as reference point for the context aware and decision-making components in the
sense of providing

1. A set of instructions negotiated with the verticals for an optimal deployment.
2. The registry of devices and nodes onboarded in the DEDICAT 6G platform that be-

longs to each vertical.
3. Registry for the software artifacts that can be potentially deployed in the platform.

Components are:

 EC Policy Factory FC:

It hosts and provides the set of pre-defined policies (per vertical) that support the proper
deployment and configuration of the verticals' applications when using the Edge Computing
capabilities of the DEDICAT 6G platform. The EC policies should provide the logic and timing

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 23

of the deployment of intelligence and dedicated resources to meet the QoS/QoE require-
ments set out in the FC Factory SLA.

 SLA Factory FC:

This FC contains a specific framework for the DEDICAT 6G platform and the vertical to nego-
tiate the details related to QoS and QoE in the form of a contract. The outcome of such a
contract will be a balance between the requirements of the vertical application and the
technical constraints associated with the particular scenario in which the application will be
deployed.

 Edge Node Registry FC:

It contains all the necessary information of the network and computational resources avail-
able in each edge node of the EC system to support the dynamic distribution of intelligence.
Some of the metrics to be stored in the registry can be CPU processing power, number of
cores available and consumed per node, RAM and storage availability, existing network in-
terfaces, battery lifetime (for mobile edge nodes) and others.

 Edge node discovery and lookup FC:

This FC is in charge of registering new edge nodes to the system and notifying any potential
issues related to the edge node availability.

 µService Registry FC:

In this FC, the instantiation information required by the microservices, such as number of CPU
cores, RAM, storage size or bandwidth, are stored in a registry. This fine-grained information
complements the EC policy factory FC data but is focused on the microservice level.

 µService Repository FC:

It registers and stores the available images and related metadata of the microservices.

 µService Discovery and Lookup FC:

The functionality provided by this FC is analogue to the edge node discovery and lookup FC
but targeted to microservice instead of edge nodes.

2.6.2 Context-Awareness FG Components

The Context-Awareness FG encompasses all the functional components that retrieve infor-
mation that contributes to build one or more than contexts, essential to assess the Decision-
Making FG in its role. Additionally, the contexts built can be potentially used by the Analytics
FG as inputs to enhance the performance or achieve optimal performance in the system.

Given its “information-donor” nature the Context-Awareness FG will be mainly related to the
work performed in WP3 and WP4, and potentially, WP5. Given the scope of this document,
here, we only provide descriptions of those FCs direct or indirectly related WP3.

 Edge Node (EN) awareness FC:

This FC comprises the necessary data from the Edge Nodes that can help to build a context
of the Edge Nodes. Within the Decision-Making procedures, such context will be used as
input by, at least, the Intelligence Distribution DM FC.

 Edge Node (EN) status agents FC:

This is an agent to be deployed in each Edge Node and it informs the Edge Node awareness
FC about the current status of the node. It is under discussion if this FC can be an agent of
the Edge Node awareness FC.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 24

 µService Awareness FC:

This FC plays a similar role to the Edge Node awareness FC but applies to microservices. It
provides information to some of the FCs of the Service FG, such as µService Orchestration FC
or load balancing FC.

 µService status agent FC:

This agent will inform about the specific metric related to monitor the status of a µService
(lifecycle, resource consumption in terms of number of CPU cores, storage or RAM).

 Deployment Awareness FC:

Assists the IDDM FC by providing a context of the microservices and FCs deployed in the
system and their current impact on the edge node where they are hosted.

 Deployment status agent FC:

It is responsible for serving status on which FCs have been deployed in a given domain, and
which Edge Nodes host them.

2.6.3 Analytics FG Components

Network Optimization FC, Network Prediction FC, Analytics Toolbox FC and Platform Perfor-
mance Analysis FC are the FCs that make up the Analysis FG. As mentioned above, the Anal-
ysis FG is dedicated to improving system performance beyond the default mechanism on
two main planes, the network and the platform, or a combination of them. By executing ML-
based techniques, this FG will be able to complement the Decision-Making FG to perform
specific tasks that may have an impact on the overall performance, such as network load-
ing, KPI optimization or intelligence delivery optimization energy-wise.

The FCs directly related to networking are responsibility to WP4, in general, however, the plat-
form performance analytics FC and analytics toolbox FC can be applied in the context of
dynamic intelligence distribution.

 Platform Performance analytics FC:

This FC is constantly receiving data to monitor the performance in the DEDICAT 6G putting
the light on specific KPIs, like system utilization rate, CPU utilization, cost or power consump-
tion and to identify potential gaps to improve. Once, the gap is to identify this component is
responsible to support other FCs to perform the same action under a different and more
appropriate approach depending on the nature of the scenario and the KPI. For instance, it
may command the Decision-Making FG to execute another algorithm more suitable than
the original one, request the Context-Awareness FG to monitor new metrics or it can also
apply ML-techniques available in the Analytics Toolbox FC.

 Analytics toolbox FC:

This component offers a set of general-purpose Machine Learning techniques to be used or
consumed by other FCs in order to provide a better solution than the previous algorithm.

2.6.4 Decision-Making FG Components

The Decision-Making (DM) FG is the one responsible to execute algorithms that can solve
certain problems related to coverage extension and intelligence distribution, in general, and
facilitate the decision making in the DEDICAT 6G platform. This FG is key in the platform and
can be considered as its “brain”. The DM FG is fed of information and data by the Context-
Awareness FG and it will command the Service Operation FG to apply the changes based
on the DM FG recommendations.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 25

As before, here we put the light on the part related to WP3.

 Intelligence Distribution DM (IDDM) FC:

The intelligence Distribution DM is one of the most relevant components in WP3. Its main role
to play is to provide decision on how and where to consume computational resources and
where to deploy the microservices. Additionally, the IDDM FC is not only responsible for mak-
ing decisions on intelligence distribution or migration, but also to accommodate and exe-
cute the algorithms that can assist the decision making. The decision-making algorithms and
mechanisms for distribution of intelligence presented in this deliverable will be part of this
component. This set of algorithms are divided in three main groups:

 Service Placement algorithms: allocate resources to services in the edge network,
edge cloud or cloud domains.

 Intelligence Migration algorithms: support for edge network node dynamicity and
end-users or device mobility.

 Resource Allocation algorithms: equity in the allocation of resources to services, in
relation to their requirements.

In addition, this component will internally evaluate and manage the possible options for solv-
ing a problem and decide which algorithm to run in case several options can be applied.

2.6.5 Service Operation FG Components

This functional group oversees translating the commands given by the Decision Making FG
to the external entities that can apply its recommendations in the system, such a NFV Or-
chestrator, load balancer or network/device controllers.

 Orchestration FC:

The Orchestration FC provides deployment and configuration details of the service or net-
working components in the selected node based on the recommendations of the DM FG
and translates them to the corresponding entities that are able to apply them in the 5G/B5G
system.

 Load balancing FC:

This FC is dedicated to managing the computational load balancing between the different
FCs and microservices according to the results provided by the decision-making FG, pre-
cisely NODM and IDDM. This functionality will be further investigated and will oversee existing
load balancing tools.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 26

3 State-of-the-art

3.1 Intelligence Distribution Algorithms

The optimal computation, resource, and storage positioning for succeeding the best perfor-
mance of challenging systems, populated by multiple mobile devices (IoT) with respect to
mobile users and data protection, is of great interest in B5G/6G networks in academia as
well as in industry sectors. Intelligence and resource allocation intended for B5G/6G net-
works, is anticipated to utilize novel optimization techniques and Artificial Intelligence-based
approaches to effectively support this kind of systems.

Currently, cloud computing, edge computing and edge caching are three emerging and
popular networking concepts to distribute computing. Cloud computing supports digital ser-
vices that need to have high performance with unlimited operation lifetimes. Edge compu-
ting tends to encounter some cloud computing issues, like the high communication delay
and network congestion due to long distance and bandwidth-intensive cloud applications.
Edge caching aims at bringing frequently requested digital service content to the storages
closer to the users. In parallel to these networking concepts, there are several scheduling
methods that balance the workload of processor nodes for better performance.

Despite the development of the above concepts, there is still a need for further research and
improvement to fulfil the emerging service and resource requirements of B5G/6G networks.
User devices within these networks have increasing demand of power, are delay-sensitive
and have immersive applications. Additionally, there are polarized communication needs in
highly crowded areas and low-density but hard-to-reach areas. Also, the service needs are
more heterogeneous and time varying, and resources become more limited and efficiency
in all dimensions is vital.

In view of the above, the optimal allocation of computation and resources is, among others,
related to the utilization of AI/ML functions and algorithms as micro-services that can be de-
ployed as re-usable components for executing specific tasks across various applications. It is
important though to study mechanisms that can dynamically determine which intelligence
functions should be executed and where, based on the available resources across feder-
ated platforms and user mobility.

There are many studies in literature related to optimal resource allocation and functional
placement in 5G, B5G and 6G [1], [2], [3]. The models usually found solving this problem are
hybrid models, swarm intelligence, genetic modelling, rule-based systems, and case-based
reasoning. Artificial intelligence techniques for resource allocation are used mainly for resolv-
ing issues such as a hybrid problem-solving approach. Some other popular techniques are
game-theoretic approaches [4] and mixed integer programming [5]. In most cases resource
allocation is an NP-hard problem, and algorithms of less possible complexity are preferable.
The following two sub-sections provide an overview of some state-of-the-art on resource or-
chestration algorithms separated in two main categories, centralized and distributed algo-
rithms.

3.1.1 Centralized Algorithms

Two centralized resource allocation algorithms were studied [6] and [7] papers. The first one
addresses the energy-efficient resource allocation problem for device-to-multi-device com-
munications and the second one addresses the energy-efficient resource allocation and
power control in D2D-cluster scenarios. In paper [8] it is presented a centralized resource
allocation method for addressing the problem of intercell interference for multiuser multiple-
input multiple-output (MIMO) capable wireless LANs. Finally, a centralized dynamic resources

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 27

allocation method for LTE networks is proposed in [9] based on cloud radio access network
(C-RAN) architecture.

3.1.2 Distributed Algorithms

A distributed resource scheduling as well as mode selection optimization algorithm based on
coalition game is proposed in [10]. A novel distributed resource allocation algorithm based
on Alternating Direction Method of Multipliers with Partial Variable Splitting for the utilization
of both the spectrum resource offered by communication network and computational re-
sources of a coexisting fog computing network is described in [11]. Another distributed re-
source allocation algorithm is proposed in [12], and it is based on game theory. It solves the
problem of cross-tier interference between D2D communication and cellular users, as well as
the co-tier interference between D2D communications.

3.1.3 Progress beyond the state-of-the-art

As it was mentioned above, there is an urgent need to further improve intelligence distribu-
tion mechanisms, to fulfil the increasing service requirements of B5G/6G networks. In this pro-
ject and in WP3, we study and develop new mechanisms to dynamically allocate data,
computation, and storage, based on network status information of both communication and
computing loads. The dynamicity can come from different sources, namely share of elastic
and inelastic on-demand services, user mobility, and mobility of data sources, network re-
source consumption, and computing resource consumption to meet the requirements of
real-time and ultra-low-delay sensitive innovative IoT applications. Moreover, since many of
the required decision-making tasks are coupled, the distribution mechanisms can be effec-
tive by jointly utilizing the underlying reactive and proactive approaches for multicasting,
computing offloading, and edge caching methods. Within this project, it is planned to study,
deploy and test initially centralized intelligence placement algorithms, as described in Sec-
tion 4.

3.2 Technologies and frameworks

This section aims at giving an overview of the most advanced and mature technologies for
distribution of intelligence in the edge network.

Dynamic deployment and migration of intelligence can only be achieved efficiently through
virtualization, which in turn can be achieved with a container-based or a Virtual Machine-
based technology. Both have pros and cons.

Virtual Machines (VM) provide better security boundaries with OS-level isolation. They also do
not rely on a particular OS. However, VMs have higher resource management overhead and
are not as easy to migrate as containers.

Containers are easier to manage in terms of portability and scalability. They require also less
resources to execute.

The technologies described in this Section are potential candidates to be used in the DEDI-
CAT 6G project, as building blocks to be built upon.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 28

3.2.1 Kubernetes

Kubernetes3 is a container-based platform. It allows service load-balancing, automatic scal-
ing, and bin-packing, and it manages containers by restarting them when they fail or do not
respond. Kubernetes is very mature because it was developed by Google and then open-
sourced in 2014. Since then, the developers’ community has been very active.

The Kubernetes orchestrator is in charge of selecting the physical nodes on which the tasks
are to be deployed, among others. It does so with a care for balancing the load and allow-
ing scalability of the services. However, it has two major limitations:

- It is not possible to explicitly provide isolation between 2 services (i.e. the tasks of one
service does not share a physical node with another service). Isolation might be neces-
sary, for instance, when a service has strict security requirements.

- There is no inter-cluster management. A service cannot span multiple tasks over different
clusters and have them run with each other.

In the next Subsections, we describe potential technical solutions to overcome these limita-
tions.

3.2.2 Crossplane.io

Crossplane.io4 is a Kubernetes add-on for inter-cluster management. Its aim is to allow multi-
ple Kubernetes clusters to run with each other with a unified API.

It is an Open-source project, released under the Apache 2.0 license. The community is huge
and very active. It is a Cloud Native Computing Foundation project.

It proposes a CLI-based management system for hyper-scalars (Amazon Web Services,
Google Cloud Platform, Elastic Kubernetes Service). Besides, a commercial solution with a
graphical interface is also proposed.

This solution is not yet readily usable for bare metal platforms, which hinders its use within the
DEDICAT 6G project.

3.2.3 Rancher

Rancher5 is an open-source multi-cluster management platform that runs on top of Kuber-
netes. The company that distributes the solution also proposes a support, for a charge.

It has a user-friendly graphical interface to manage the clusters. It supports various Kuber-
netes distributions (including RKE, K3S, K8S, and GKE…). Rancher can replace the account
management in Kubernetes, for easier user management among the different clusters.

It is very close to a production-ready platform, but the API is not rich and flexible enough for
easy integration with the DEDICAT 6G platform.

3.2.4 Kubefed

Kubefed6 allows to use a single Kubernetes cluster to coordinate multiple Kubernetes clusters.
It can deploy multi-cluster applications.

3 https://kubernetes.io

4 https://crossplane.io/

5 https://rancher.com/

6 https://kubernetes.io/

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 29

Kubefed is open source. The community of developers is huge, and it was chosen by RedHat
for their solution for managing all types of clusters. RedHat is also a main actor for the devel-
opment of Kubefed.

Kubefed does not provide a graphical interface, but it allows a fine granularity for the clusters
management, down to the namespace level or API group, for instance.

3.2.5 Anthos

Anthos7 unifies the management of infrastructure and applications across on-premises,
edge, and in multiple public clouds with a Google Cloud-backed control plane. It is also
able to manage bare-metal, hyper-scalars, VM, server-less.

Since recently, Anthos can be installed on bare-metal in order to provide an edge compu-
ting solution. Anthos provides a new concept called ‘environ’ that allows to define a
namespace across several clusters.

Anthos is a black-box proprietary solution; therefore it might not be suitable as a building
block on top of which the DEDICAT 6G platform is built.

3.2.6 NFV Orchestration

Network Function Virtualization (NFV) is one of the key technologies that underpins the 5G
emergence and it is considered as one of the main enablers for the future roll-out of B5G/6G
networks. NFV is based on the virtualization of network functionalities, called as Virtual Net-
work Functions (VNFs), originally implemented in bare-metal devices, but in this case de-
ployed in virtual machines or containers in order to be easily accommodated along all net-
work domains, for instance, remote cloud servers or devices with some computational avail-
ability placed at the edge. According to the NFV standards, the management and orches-
tration (MANO) procedures and tasks are in charge of the main actor in NFV, the NVF Or-
chestrator (NFV-O), more details below.

Figure 4: ETSI MEC and ETSI NFV standards interoperation

Given their software-based nature, VNFs will consume computational resources in the system

7 https://cloud.google.com/anthos

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 30

to perform their specific functions or roles and therefore, in accordance with the above def-
initions of intelligence in this document, should be considered in the dynamic intelligence
distribution mechanisms of the DEDICAT 6G scenario. Within the DEDICAT 6G context, NFV is
a transversal technology that will be involved in two of the main pillars of this project, intelli-
gence distribution (WP3) and coverage extension and connectivity (WP4). More details
about NFV orchestration, in general, and how to be applied to coverage extension, in par-
ticular, can be consulted in D4.1 [18].

As key part of the 5G ecosystem, telco enterprises, network equipment vendors and stand-
ardization bodies have put the light on NFV and as consequence the technology is settled
by specific standards. Thus, the European Telecommunications Standards Institute (ETSI) cre-
ated a specific Industry Specification Group, the ETSI ISG NFV8, to define the structure, chal-
lenges, and evolution of NFV. Moreover, the ETSI ISG is totally aligned to many 5G/B5G-re-
lated standards, like ETSI MEC, that leads the standardization activities around the Multi-Ac-
cess Edge Computing (MEC)9, or ETSI ENI, devoted to the definition of cognitive network
management architecture with the assistance of Artificial Intelligence10. Figure 4 illustrates a
basic architecture with MEC and NFV principles that are to be applied under the same con-
text, where vertical applications are deployed by leveraging the MEC capabilities in a virtu-
alized infrastructure (NFV-I) orchestrated and coordinated with the NFV-O assistance. The
key here is that some MEC components can be deployed in the NFV-I as VNFs, this way en-
abling their management by the NFV-O.

Furthermore, one of the main results of the ETSI ISG effort is the creation of an Open-Source
Platform to play the role of NFV-O, called as Open Source MANO (OSM)11. OSM is one of the
most widely used tool for NFV-O in academia, research projects and even in industry. OSM
not only serves a complete set of functionalities related to MANO operations, but also is
providing two key offering for the DEDICAT 6G purposes:

- a standardized API, based on ETSI SOL005 [19] specifications, to be remotely controlled
or executed,

- and an ETSI-based information model to create descriptors to define the deployment or
instantiation details (among others) of VNFs, network services or even network slices fol-
lowing standardized rules (SOL006, cf. [20]).

For instance, in the SOL006 [20] information model we can specify some features totally
aligned with the distribution of intelligence, such as CPU, storage or RAM to be consumed by
the VMs associated to the VNFs, or the internal network settings in the NFV-I, or where to
deploy the VNFs, thus indicating the distribution of the VMs/containers related to network
functionalities. Further information about OSM can be found in D4.1 [18] and [6].

In Figure 5, we can see an exemplary diagram of how NFV (OSM as NFV-O) can be applied
under the assistance of the DEDICAT 6G platform in intelligence distribution operations. In this

8 ETSI, “ETSI ISG NFV”, Online : https://www.etsi.org/technologies/nfv

9 ETSI, “Multi-access Edge Computing (MEC)”, Online: https://www.etsi.org/technologies/multi-access-edge-
computing/mec

10 ETSI, “Experiential Networked Intelligence (ENI)”, Online: https://www.etsi.org/technologies/experiential-net-
worked-intelligence

11 https://osm.etsi.org/

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 31

case, after running a given intelligence distribution algorithm provided by the Decision-Mak-
ing FG and with the assistance of the Intelligence Distribution and Context-Awareness FGs,
the output of such execution is forwarded to the Orchestration FG. Here, it is in charge to
convert the recommendations to a concrete template/blueprint based on the SOL006 [20]
information model to be readable by OSM. Then, an OSM client available in the Communi-
cation FG would transfer the VNFs’ placement recommendations, by exploiting the OSM API,
to be translated to the network system (in edge or cloud nodes), defined in the SOL006-
based template/blueprint. This way, the DEDICAT 6G platform could, for instance, command
or assist OSM in the instantiation of network slices by indicating the distribution (where to
place) of a concrete type of distribution, VNFs or the computational resources to be con-
sumed by the VMs/containers associated to the VNFs.

Figure 5: DEDICAT 6G Intelligence Distribution assistance with NFV capabilities

4 Algorithms for Distribution of Intelligence
In this section, we describe the preliminary work on algorithm design for intelligence distribu-
tion decision-making functional components.

4.1 Placement of Intelligence

As part of the specification and development of the mechanisms which will enable the dy-
namic distribution of intelligence (data, computation, storage), this sub-section presents an
intelligence functions placement algorithm which ensures efficiency of the system, with re-
spect to a chosen KPI, or a set of KPIs. This algorithm can be applied to all four use-cases. The
problem statement is the following.

4.1.1 Problem Statement

We consider a set of Functional Entities (FEs) � = {��,��, …, ��, …, ��} e.g., tasks, jobs, services
and a set of Hosting Entities (HEs) � = {��,��, …, ��, …, ��} e.g., edge nodes, core nodes,

robotic units, end user devices, Virtual Machines, containers. Each FE has a processing time,
a set of successors FEs and a computational load denoted by ��. The communications be-
tween FEs are represented by the functional graph (service graph), which is denoted by ��

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 32

= (F, K). Each node F corresponds to a FE and each edge K connects interacting FEs and is
weighted by, ��,��, according to the amount of data transferred between FEs �� and ���.

Moreover, each HE �� has some capabilities. These are the maximum computational load ��

which is related to the number of available CPU cores the available RAM and disk storage,
the battery level if applicable and the functionality-wise ��, which is a set that consists of FEs

that the HE �� can support (�� ⊆ �). It is also considered a system layout graph �� = (H, L)

consisting of the available HEs and the communicational channels L among them. The com-
municational channel between the HEs ��, ���, has a communication cost, denoted as ��,��.

Our objective is the allocation of FEs to HEs. Let ��, denote the set of FEs that will be assigned

to HE ��, �� ⊆ �. We aim to optimize the objective function that satisfies a set of performance

constraints. Specifically, we are looking for the minimum cost allocation that satisfies a set of
performance constraints.

The objective function is associated with:

 the cost of utilizing a HE ��, mostly related to the battery level of the HE if applicable.

This cost takes higher values when battery is low and close to zero values when it is
fully charged or when the HE is not battery-powered.

 the power consumption cost ��,� of running the FE �� on the HE ��.

 the computational cost ��,� of running the FE �� on the HE ��, which is related to the

computational load �� of the FE and the maximum computational load �� of the HE,

 the cost (latency), ��,��, imposed by the communication among HEs, which may be

related to the availability of the HE to conduct the job (i.e., standby mode) etc.

The constraints of our problem address the following aspects:

 All FEs need to be assigned to the available HEs.
 All capabilities of HEs need to be respected.
 The capacity constraint of each communicational link should be respected.
 We assume that the communication cost between two FEs ��, ��� executed by the

same HE, is negligible (��,�� ≈ 0)

4.1.2 Problem Formulation

We introduce the set of decision variables ��:

�� = �
1, �� �� �� ��������

0, �� �� �� ��� ��������.

We introduce the set of decision variables ��,� to describe the allocation of FEs to HEs:

��,� = �
1, �� �� �� �������� �� ��

0, �� �� �� ��� �������� �� ��.

Moreover, we define the set of decision variables ��,��, to describe the communication

among HE:

��,�� = �
1, �� �� ��� ��� ��� �������������

0, �� �� ��� ��� ��� ��� �������������.

Finally, we introduce the set of given binary variables ��,�, to indicate the feasibility of assign-

ing a FE to a HE in terms of functionality-wise, if, in general, the HE can support the FE:

��,� = �
1, �� �� ⊆ ��

0, ��ℎ������

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 33

The problem of obtaining �� may be reduced to the following problem:

��� � ����

�

���

+ � ����,� ∗ ��,� ∗ ��,��

�

���

�

���

 + � ����,� ∗ ��,� ∗ ��,��

�

���

�

���

+ � � ���,�� ∗ ��,���

�

������

���

���

Subject to:

 ∑ ��,�
�
��� = 1 , ∀ 1 ≤ � ≤ �, � ∈ ℕ, all FEs are allocated,

 ∑ [��,� ∗ ��]�
��� ≤ �� , ∀ 1 ≤ � ≤ �, � ∈ ℕ, the maximum computational load of the HEs is

respected.

 ∑ ��,�
�
��� ≥ 1 , ∀ 1 ≤ � ≤ �, � ∈ ℕ, all FEs can be assigned to at least one HE in terms of

functionality-wise.

 ∑ [��,� ∗ ��]�
��� ≥ �� , ∀ 1 ≤ � ≤ �, � ∈ ℕ, all HE that are utilized (�� = 1) have at least one

FE assigned on them.

The notation described above can be found in Table 2. The constraint of the maximum ca-
pacity of the links among HEs will be part of a future investigation.

Table 2: Intelligence Functions Placement notations

Notation Definition

� = {��,��, …, ��, …, ��} Set of Functional Entities (FEs)

� = {��,��, …, ��, …, ��} Set of Hosting Entities (HEs)

�, �� Indexes of FEs

�, �� Indexes of HEs

� Total number of FEs

� Total number of HEs

�� Computational load of FE ��

�� = (�, �) Functional graph with nodes � and edges �

��,�� Weights of interacting FEs ��, ���

�� Maximum computational load of HE ��

�� Functionality-wise of HE ��

�� Cost of utilizing a HE (related to the battery level)

��,� Computational cost of running FE �� on HE ��

�� = (�, �) System layout graph with nodes � and computational channels
�

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 34

��,�� Cost of communication between HEs �� and ���

��,� Power consumption cost of running FE �� on HE ��

�� Set of FEs that will be assigned to HE ��

�� Takes 1(0) depending on whether HE �� is (is not) utilized

��,� Takes 1(0) depending on whether FE �� is (is not) assigned to HE
��

��,�� Takes 1(0) depending on whether HE �� and ��� are (are not)

communicating

��,� Takes 1(0) depending on whether FE �� can (cannot) be as-
signed to HE �� in terms of functionality-wise

4.1.3 Execution Environment / Deployment

The described intelligence functions placement algorithm is planned to be implemented in
Python, will be containerized, and deployed using Docker. Also, an API documentation will
be created for this algorithm by using the Swagger open-source tool.

In general, this algorithm is mapped to the Intelligence Distribution-Decision Making FC (IDDM
FC) of the Decision Making FG described in §2.5.4. It is going to be closely connected with
the Service Registry FC (§2.5.1), Orchestrator FC (§2.5.5), Platform Performance FC (§2.5.3)
and Edge Node Awareness FC (§2.5.2). The Platform Performance FC will trigger the intelli-
gence functions placement algorithm when detecting a performance anomaly or error. The
Service Registry FC is going to inform the intelligence functions placement algorithm on ser-
vices instantiation. The Edge Node Awareness FC is going to give resources (cloud, MEC,
network, extreme edges) information to the intelligence functions placement algorithm. Fi-
nally, the intelligence functions placement algorithm will instantiate new service deployment
etc. to the Service registry FC and the Service registry FC will send this information to the
Orchestrator FC to execute the decision.

4.2 Placement of services in Smart Warehouse

4.2.1 Problem statement

One key aspect of the decision-making algorithm is to decide where to place the services
and the data. Indeed, these placements have a major impact on the allocation of resources
for services, and on the perceived quality of service by end-users.

In this subsection, we consider the problem of service placement in the smart warehouse.
The aim is to decide where to locate the execution of the tasks needed by services requested
by end-users.

An example of such services is Augmented Reality (AR): the end-user terminal (e.g. con-
nected glasses) is live streaming to an application in the cloud, which in turn processes the
images and encodes information in it. The resulting enriched video stream is sent back to the
terminal which displays it. This service is characterized by a very strict latency requirement,
because the enriched video stream must be almost on sync with the original one. It is also
characterized by requiring a lot of computing resources for processing the original video
stream, which prevents the processing to be performed by the terminal itself.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 35

Another example of service is the same as augmented reality, except the enriched stream
is sent to several terminals, and also to the cloud for storage. The problem is even more diffi-
cult in that case.

In order to design the placement algorithm, the first step is to model the services on one hand
and the underlying infrastructure on the other hand.

Services are modelled as one task, and several flows connecting the task with different des-
tinations.

Figure 6: Illustration of users, edge cloud and cloud in the smart warehouse

Figure 6 gives an illustration of the network elements in the infrastructure, which have to be
taken into account in a particular use-case, namely the Smart Warehousing use-case.

In this problem, we have to consider the capacity of the network links, for two reasons: firstly,
most of the services have bandwidth requirements, so they have to share the link resources,
secondly, experience has shown that the latency induced by a link is dependent on the load
on this link. As a consequence, we need also to model the latency of a link as a function of
its load. As a first approximation, we assume in the following that the latency is an affine
function of the load, i.e. a function of the form: L(x) = ∝ � + �, with L the latency and x the
load.

Each service has a requirement in term of a maximum latency that must be met. The latency
of the service is computed by adding the latency of each link crossed by the service traffic.
Each flow of a given service may have different latency requirement. With the example
given above, the flows of AR streams to the AR glasses have a stricter latency requirement
than the flow going to the cloud for storage.

In addition, services have requirements in terms of minimum resources that must be available
on the host on which they run. These resources requirements include computation (CPU or
GPU), memory, storage, electrical power. These resources are additive, which means that
the total resource of each type used on a particular node is the sum of the resources of all
the services running on this node.

The flows from the service task may have variable throughput. Indeed the service may still
be functional even with a degraded quality of service. In certain conditions, it might be nec-
essary to lower the throughput of some flows in order to meet the latency requirement of the
flow. Each service should define whether or not they accept a lower throughput, and in
which range. Of course, when possible, the flows should be at the highest level of throughput,

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 36

so as to offer the best quality of service as possible.

4.2.2 Problem Formulation

We model the network and the end-user terminals as a digraph graph G = (E, A). E is the set
of nodes and A is the set of arcs (i.e. the directed edges).

Each flow is given a profit value, i.e. a weight for its throughput. The objective function is to
maximize the weighted average flow throughput.

In addition, Table 3 sums up the notations used in the following.

Table 3: Notations for the placement of services in Smart Warehouse

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 37

With the given notations, a compact formulation for the problem is the following:

The set of constraints (1) are the flow conservations constraints. The symbol δ(u) represents
the neighbours of node u. The symbol u0 represents the destination of flow f (recall its origin is
the task of service s). Constraints (2) express the node capacity limit, and constraints (3) ex-
press the capacity of the arcs. Finally, constraints (4) enforce the latency requirements on
the flows.

The resulting compact formulation is clearly not linear, because of constraints (4). In order to
ease the resolution of this problem, we will propose a linearized version of this formulation.
This is currently work in progress.

4.3 Placement Optimization in Smart Highway

4.3.1 Multi-Objective Optimization

The field of Multi-Objective Optimization (MOO) considers the problem of optimizing several
conflicting objectives. The generic shape of the problem definition in MOO is defined be-
low, where �� represents the k-th objective function over solution �, �� represents the ine-

quality constraints and ℎ� represents the equality constraints.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 38

Working with multiple conflicting objectives will not provide a single optimal solution. Rather,
it will provide a set of non-dominant solutions, where each solution improves on an objective
but worse on another. This set of solutions form the Pareto Front (PF), depicted below.

This Pareto front contains all optimal solutions regarding a MOO problem. However, to opti-
mize in a practical environment, a single solution from this PF is needed. This can be found by
one of three approaches:

 A priori optimization: User preferences are modelled in the problem in advance, and
the algorithm finds a single solution

 Interactive optimization: The Decision Maker (DM) interacts and fine tunes the prefer-
ences to find a single solution

 A posteriori optimization: The entire Pareto front is found, and a DM selects the solution

As the intelligence distribution service works autonomously, a priori optimization will be ap-
plied. Preference definition will be pushed towards the DM.

4.3.2 Multi-Objective Reinforcement Learning

The field of Multi-Objective Reinforcement Learning (MORL) is a promising field in which an
RL agent optimizes multiple conflicting objectives concurrently. The environment will be mod-
elled as a Multi-Objective Markov Decision Process (MOMDP), providing a general frame-
work in which the agent can participate. In general RL, the agent will take actions in an
environment which influence this environment. These actions cause the environment to
change state, providing the agent a new observation of the environment, and a reward on
how useful his action was. Using these rewards, the agent learns a policy on how to behave
within a certain state of the environment to achieve the highest possible rewards.

In the field of MORL, this single reward becomes a reward vector, with each value in the
vector representing a specific objective. This vector is then used in a variety of different ways
to learn a policy which takes into account all objectives.

One of the common ways to do this is by building a utility function which takes into account
all objectives and scalarizes them to a single value. This approach enables the usage of sin-
gle-objective optimization techniques. One of the most common scalarization utility func-
tions is the weighted sum approach. This approach multiplies each objective with a prede-
fined weight and sums them together. These weights represent the user preferences, with
each weight prioritizing a different objective. Although one of the simplest solutions, this ap-
proach has its drawbacks, such as having difficulties with finding pareto-optimal solutions.

As defined by Radulescu et al. [31], these utility functions can be integrated into the MORL
agent in two distinct ways. The first integration is using the Expected Scalarized Returns (ESR)

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 39

description. This approach tries to optimize the objectives over a single run.

Here, ��
� represents the expected returns for policy �� and utility function �. �� represents the

discount factor at timestep �, with � representing the vector of rewards/objectives on policy
� and �� being the initial distribution over the states.

The second integration is using the Scalarized Expected Returns (SER) description, which tries
to optimize the objectives over all runs. This description fits the project problem definition for
service allocation and will be the one more suited for the project.

These utility functions are used in several scenarios to support dynamic behaviour with re-
gards to changing weights. The approach we propose to use within the project is the dy-
namic weights approach, first coined by Abels et al. [32]. This approach trains several net-
works for several sets of weights. These networks can then be used interchangeably were the
weights of the problem case to change.

The agent works in a centralized environment with full observability. This enables a large de-
gree of freedom and ensures that a global optimum can be achieved. In a first stage, the
agent will be trained on a specific crossing, considering the possible cars connected to the
network. In a next stage, this approach can be extended to work using Graph Neural Net-
works. This approach extends the input of the neural network to work with any size of graph.

4.3.3 Centralized Optimization

Centralized optimization techniques can range from Mixed Integer Programming to heuristic
approaches and even Machine Learning methodologies such as Reinforcement Learning.
These methodologies have the added benefit of utilizing the global state of the network, en-
abling global optimization. This does, however, have the increased cost of communicating
the entire state to the node running the centralized optimization algorithm, which can in-
duce network load and outdated views of the network. Global optimization helps ensuring
that all applications are treated fairly and have an equal share of the resources. Centralized
optimization techniques generally also better support migration optimization, since it can
take into account the previous global state when finding an improved placement. The pro-
ject considers multiple KPIs, such as latency and energy consumption minimization. These
KPIs can be represented as multiple conflicting objectives, which will be simultaneously opti-
mized by the selected algorithm. Multi-objective optimization suffers from normalization is-
sues, since the metrics which are compared are usually not in the same magnitude, with for
example the bandwidth metric being in the megabit/gigabit range and latency in the milli-
second/microsecond range. This does not matter in pure multi-objective optimization, as all
non-dominating solutions (solutions which are better on one objective but worse on another)

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 40

are kept, but the magnitude difference does matter for the project, as only a single solution
will be applied based on the user preferences. These preferences are generally defined
within the range [0, 1] and require the objectives to be normalized. The project architecture
is not designed with a human in the loop, and as such requires a fully autonomous system. In
order to select the best solution from a set of multiple competing solutions with regard to
objectives, a preference is required. This preference can be achieved by using weighted
sum scalarization techniques, which multiplies each objective with its specific weight, and
then sums all objectives together. Another alternative is lexicographic ordering, where the
objectives are ordered by importance and used to compare the quality of solutions.

Multiple state-of-the-art multi-objective optimization algorithms are already available. These
include metaheuristic approaches such as the NSGA-II algorithm [39], a bio-inspired algo-
rithm which evolves a solution set towards the optimum. Similarly, several Reinforcement
Learning (RL) algorithms are available which learn the optimal behaviour for task allocation.
Such approaches include universal value function approximation, generalizing over the
available states and actions.

Machine learning methodologies can also be used in an offline fashion, where the agents
are trained on a dataset or simulation of the use-case, learning the behaviour of the envi-
ronment without physically interacting with it. This requires a large dataset of the specific en-
vironment, or an accurate simulator. Such offline approaches often suffer from the sim2real
gap [48], where there is a difference between the offline learned policy and the actual op-
timal policy of the online environment.

4.3.4 Distributed Optimization

Distributed optimization techniques for placement optimization tries to tackle the problem
from the decentralized perspective, where there is no single point of failure. Distributed algo-
rithms tend to optimize more toward local optima, since they lack a global state of the envi-
ronment. This lack of global state does reduce the global network overhead since no global
state needs to be built, but this is compensated by the interactions between multiple agents
of the distributed algorithm. Such techniques tend to be more able to immediately act on
changes in the environment, since there is no overhead of communication with the central-
ized algorithm. This does depend on the selected algorithm, as this is not always the case:
finding a consensus with the entire network can also take longer than in a centralized net-
work.

Distributed optimization techniques are often built on game theory, with one example being
the Contract Net Protocol [47], where multiple agents communicate and work together to
find a consensus on where to offload the task

Machine learning methodologies also exist for distributed optimization, where multi-agent
multi-objective reinforcement learning agents try to achieve a consensus on the optimal
placement. This can be achieved using fully distributed methodologies, such as Gossiping RL,
or using hierarchical methodologies, such as Feudal RL [35], where a manager tells multiple
RL agents what they should be optimizing towards.

4.3.5 Placement Methodology

The placement of software components across the edge nodes will be optimized utilizing a
multi-agent multi-objective approach. This approach will consist of an agent, the local net-
work configurator, dynamically optimizing the network link connections between multiple
services, and another agent, the global orchestrator, optimizing the placement of the re-
quested services across the available resources. This orchestrator works at a lower temporal

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 41

resolution as the network configurator. This separation of concerns enables the network con-
figurator to support URLLC scenarios, while the orchestrator ensures the global optimum of
the placement across the dynamic resources without having significant impact on the QoS
due to migration costs.

4.3.6 Orchestrator

 A centralized orchestrator will ensure optimal placement of the software services across the
network. The centralization of intelligence ensures that the algorithms will be able to define
a global optimum, rather than multiple local optima which might reduce the efficiency of
the global system in terms of latency and energy consumption. The centralized approach
ensures that there is no resource competition from multiple independent service orchestra-
tors, which could result in either resource starvation due to overloading of the edge node, or
in unsafe scenarios where the target service is placed on a resource too far away from the
source service for the services to function correctly. A third consideration for the centraliza-
tion of intelligence is the support for services with a considerable start-up time. In a decen-
tralized approach, these services would be started once a vehicle joins the network, but in
this centralized approach, predictive placement could be utilized to anticipate on the net-
work load and place certain services in advance. This orchestrator can also include the mi-
gration cost and QoS assurance: in the scenario where a service migrates between two
nodes, the orchestrator can ensure that both stay available until all links have been moved
to the new instance of the service. Additionally, the centralized algorithm can more easily
support stateful migration. The methods utilized for this approach consist of state-of-the-art
multi-objective reinforcement learning methodologies.

4.3.7 Link Optimization Methodology

To support low-latency QoS assurance, a local link optimization methodology is proposed.
This multi-agent approach ensures that each connection from the VRU or the OBU to the RSU
supports the requirements needed by the link. Each agent will optimize its own link based on
the knowledge of the network and will continuously monitor and adapt to changes. The
agent will be running on the side of the OBU and VRU and will be monitoring the available
network resources in its local area. Due to its locality, the agent will be doing independent
local optimization instead of global optimization, to increase response time and reduce net-
work load.

The proposed methodology uses a Multi-Agent RL approach. In this approach, a reinforce-
ment learning agent optimizes the selection of the used link based on the requirements and
the availability. Chu et al. [37] compared both independent Advantage Actor Critic (A2C)
and independent Q-Learning to a novel methodology in a cooperative setting. Although
our setting is a cooperative setting as well, since the agents will get the most optimal policy
if they work together, an independent approach might still be useful. This is due to the limited
observability of the problem, requiring agents to know what the other agents are doing. To
partially resolve the issue of the partial observability with decentralized agents, an approach
is proposed by Zimmer et al. [49], who proposed a fair policy learning model for a MARL
context. This approach uses a Centralized Training, Decentralized Execution (CTDE) for the
agents. This allows the agents to cooperate and learn each other’s behaviour when learning,
which can in turn be used when they are executed decentralized over all respective com-
puting nodes. This approach removes the partial observability, since the agents know what
the other agents are doing. This approach will have difficulties with further online learning.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 42

4.3.8 Intelligence Migration

One example for intelligence migration at the edge can be found in UC4, this also illustrates
how intelligence and awareness are being handled and exchanged between different ac-
tors in the connected autonomous driving scenarios and sub-scenarios.

Vehicular Ad-hoc Networks (VANETs) mainly have two types of communication. Vehicle-to-
Vehicle (V2V) communication and Vehicle-to-Infrastructure (V2I) communication. Commu-
nication systems must operate with low latency and ensure high reliability. Aiming to provide
computing services close to the devices that need them, Mobile Edge Computing (MEC) is
a potential solution that ensures reliability and low latency. MEC allows autonomous vehicles
to offload resource-intensive tasks and run applications on multiple platforms. Mobile Edge
Hosts are typically installed on roadside units (RSUs) or can be physically located close to the
RSUs.

In V2I communication, the vehicle receives information about surrounding traffic information,
pedestrians, cyclists, and vehicles on the road in real-time, greatly improving driving safety
and comfort. RSU is an essential part of V2I, and the RSU distribution in the vehicle network
has a significant impact on the performance of V2I communication.

Figure 7: Example of VRU, RSU, and vehicle on the road

Buildings, fences, plants, and other obstacles can limit visibility at city traffic intersections,
which can easily create dangerous situations. Thus, vehicle drivers approaching the intersec-
tion have limited reaction time when other obscured road users, such as pedestrians and
cyclists, appear unexpectedly. The RUS is installed in the infrastructure to support real-time
decision-making by drivers by transmitting safety-critical object data and hazard warnings
to the vehicle in vehicle-to-road collaboration scenarios. For these tasks, the RSU is equipped
with sensors, radio communication, and data processing units.

The RSU is used to collect intelligence vision data from objects outside the driver's field of
view. The safety-critical object data information and its coordinates are transmitted from the
RSU to the vehicle in real-time. This information is categorized and highlighted for the driver

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 43

on the screen to support real-time decision-making.

In Figure 7, since VRU1 and VRU2 are located in the vehicle's NLOS (Non-Line of Sight), it is
impossible to recognize them in the OBU (On-Board Unit) mounted on the vehicle. On the
other hand, VRU1 and VRU2 are located in the LOS (Line of Sight) of the RSU. The RSU can
detect VRU1 and VRU2 provide their information to the vehicle. Although VRU2 is located in
the LOS area of the RSU, it is difficult to accurately detect the VRU2 from the RSU due to
obstacles on the road. In this case, since the location information of VRU2 is transmitted to
the RSU through the VRU app, the VRU2 that is obscured by road obstacles can be integrated
at the RSU side. In other words, the VRU app is responsible for estimating the current location
of the VRU and sending that information to the RSU near the VRU location. The RSU then
integrates the information sent by the VRU app with the VRU information detected by the
RSU's vision sensor and forwards it to the vehicle.

Figure 8 shows the structure to be considered in a specific V2I use case. Information between
RSU, vehicle, and VRU apps is transmitted through a cloud server. The cloud server classifies
the vehicle's location received from the vehicle's OBU and the VRU location information re-
ceived from the VRU app and delivers it to the RSU. In RSU, the location information transmit-
ted from the cloud server and the VRU location information detected by the RSU's camera
sensor are integrated and transmitted back to the cloud server in real time. The cloud server
then analyses the integrated information and distributes it to the VRU app and vehicle. Fi-
nally, the vehicle and VRU apps determine dangerous situations and display appropriate
warning messages to drivers and pedestrians.

Figure 8: Structure for V2I communications consists of RSUs, Cloud Server, VRUs, and Vehicles

An example of the JSON data format transmitted between RSU, VRU, and Vehicle is shown
in Figure 9, and the details of the JSON format are listed in Figure 9.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 44

Figure 9: Example of data format transmitted in V2I

Table 4: Example of exchanged information for UC4 in JSON format

Direction JSON Type

Vehicle (OBU) RSU

{

“vehicleid”: “vehicle1”, “latitude”:50.123456, “longi-
tude”:12.123456

}

 vehicleid: the id of vehicle
 latitude: Latitude value of

the vehicle’s current loca-
tion

 longitude: Longitude value
of the vehicle’s current lo-
cation

VRU app RSU

{

“vruid”: “vru1”,

“latitude":50.123456,

“longitude":12.123456

}

 vruid: the id of VRU
 latitude: Latitude value of

the VRU’s current location
 longitude: Longitude value

of the VRU’s current loca-
tion

RSU Cloud server

{

“rsuid":“rsu1",

“area":{

 “lefttoplatitude":50.123456,

 “lefttoplongitude":12.123456,

 “rightbottomlatitude":50.123456,

 “rightbottomlongitude":12.123456

 }

}

 rsuid: the id of RSU
 area: Rectangular coordi-

nate value of bird eye view
of RSU detection area

RSU Vehicle (OBU) &
VRU app

{

”rsuid":"rsu1",

 rsuid: the id of RSU
 area: Rectangular coordi-

nate value of bird eye view

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 45

"area":{

 "lefttoplatitude":50.123456,

 "lefttoplongitude":12.123456,

 "rightbottomlatitude":50.123456,

 "rightbottomlongitude":12.123456

},

"vru":[{

 "type":"person",

 "confidence":90.68,

 "latitude":50.123456,

 "longitude":12.123456

 },

 {

 "type":"car",

 "confidence":90.68,

 "latitude":50.123456,

 "longitude":123456},

 …]

}

of RSU detection area
 vru: Integrated VRU infor-

mation from RSU (array
form)

 type: the type of VRU (e.g.
person, cyclist, car)

 confidence: VRU detection
reliability (probability)

 latitude: Latitude value of
the VRU’s current location

 longitude: Longitude value
of the VRU’s current loca-
tion

RSU Vehicle (OBU) &
VRU app

{

”id":”vru1",

“warning": collision,

”from":”rsu1"

}

 id: the id of VRU
 warning: the type of risk
 from: The id value of the RSU

that occurred risk prediction

 Intelligence distribution and migration between RSUs

The core in the intelligence distribution of and migration between the RSUs is to determine
the optimal installation locations to detect the VRU on the road. Because deployment of
RSUs is expensive and requires pre-installed infrastructure for both power and telecommuni-
cation lines, the issue of intelligently and optimally determining where to deploy RSUs is one
of the important tasks.

Figure 10: Placement problem of RSUs

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 46

Assuming that the blue range in Figure 10 is the area of the VRU detection sensor-equipped
in the RSU, a single RSU cannot cover all intersections without blind spots. So, it needs to de-
cide how many RSUs are needed and where to distribute them on the road.

 Problem modelling

We formulate a coverage problem to solve the RSU placement problem. The field of view of
a camera mounted on the RSU can be described by a triangle as shown in Figure 11 (a). The
parameters of this triangle can be calculated from the camera parameters, which are given
in advance. The field of view of the triangle enables us to express the area covered by RSUs
camera at position (��, ��). And the field of view can be translated to the origin of the coor-
dinate system and then rotated to become parallel to the x-axis shown in Figure 11 (b).

Figure 11: Model of RSU's field of view

�
��

��� = �
���� ����

−���� ����
� ∙ �

� − ��

� − ��
�

The coordinate-transformed ��, ��conditions are determined as follows:

�� ≤ �

−
�

2�
�� ≤ �� ≤

�

2�
��

Therefore, the area occupied by the camera's field of view can be defined by the following
three equations.

���� ∙ (� − ��) + ���� ∙ (� − ��) ≤ �

−���� ∙ (� − ��) + ���� ∙ (� − ��) ≤
�

2�
{���� ∙ (� − ��) + ���� ∙ (� − ��)}

−
�

2�
{���� ∙ (� − ��) + ���� ∙ (� − ��)} ≤ −���� ∙ (� − ��) + ���� ∙ (� − ��)

We approximate the rectangular space with of width w and height h in a two-dimensional
grid of the area that should be covered by the RSUs. RSUs can only be placed on these
discrete grid points and coverage is guaranteed only for those grid points. And we assume
that only one camera is equipped with an RSU and consider only one type of camera, i.e.
one with the same angle of view. Given a set of grid points and a camera model, minimize

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 47

the total number of RSUs while ensuring that all grid points are covered by one or more RSUs.
So, a RSU at position (��, ��) with orientation � can cover a grid point (�, �) if and only if the
above three equations are satisfied.

Let a binary variable ���� be define as:

���� = �

 1, �� � ������ ������� �� ��� �� ������ �� ���� ����� (�, �)
���ℎ ����������� �

 0, ��ℎ������

The total number of RSU is then given by

� � � ����

��

���

���

���

���

���

And a binary variable �(�, �, �, �, �) is defined by:

�(�, �, �, �, �) = �

1, �� � ��� ������ �� ���� ����� (�, �) ���ℎ ����������� �

����� ���� ����� (�, �)

 0, ��ℎ������

Thus, the RSU deployment problem can now be formulated as:

��� � � � ����

��

���

���

���

���

���

Subject to

� � � ����

��

���

���

���

���

���

∙ �(�, �, �, �, �) ≥ 1

� ����

��

���

≤ 1

0 ≤ �, � ≤ � − 1

0 ≤ �, � ≤ ℎ − 1

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 48

5 Architectural Techniques for Distribution of Intelligence
The key technique to improve the behaviour of the DEDICAT 6G networked system with re-
spect to the Key Performance Indicators is to distribute intelligence dynamically and more
optimally. To support this broad goal, we study algorithms, architecture and hardware sup-
porting distributed intelligence. This section focuses on the two last perspectives in terms of
architectural techniques and HW/SW solutions for distribution of intelligence.

The specific goals of WP3 include (T3.1) architectural techniques for supporting offloading,
migration and distribution of computing and communication on processor, storage, and net-
work levels, (T3.2) algorithms for migration and distribution of intelligence, and (T3.3) valida-
tion of the mechanisms for computation placement optimization also related to the high-
level architecture and scenarios/use cases defined in WP2 and carried out in WP6, respec-
tively. This subsection of this First release of mechanisms for dynamic distribution of intelli-
gence deliverable describes early T3.1 work done in the field of architectural techniques and
lists plans for the next period. As projected in the project plan, the considered individual tech-
niques include efficient context switching, patterns of computation and communication,
e.g., multicasting, load balancing, movement of threads, support for keeping the state of
the computation simple as well as efficient computation management. These techniques
are key to improving the performance of computation, i.e., reducing the latency of services
provided by the network. Some techniques, such as work sharing and computation man-
agement, can be implemented with existing hardware while others, like fast context switch-
ing with multithreading and thick control flow execution, may require updated hardware.

Usage of intelligence is supported in the network by executing given functionalities in the
computing nodes, such as data centers, edge servers and terminals, and inputting/output-
ting relevant data from/to users and exchanging it between the participating nodes. Since
terminals often come with physical and logistic constraints related to computational capac-
ity, size of the data storage, available energy, physical dimensions and footprint of the de-
vice, security, accessibility and maintenance, part of the computations is typically sent
out/offloaded to be handled in the network either as computing services or user controlled
remote computation. Besides utilizing networked computing hardware, movement of com-
putation for this purpose also introduces a need to utilize communication links to guarantee
that the right input, output and intermediate data is in the right place at the right time. As a
result, many kinds of communication related aspects, such as latency, bandwidth, conges-
tion, routing, protocols, and reliability, will also have effect on the usage of intelligence. While
there are basic solutions for offloading computation into the network and balancing the
workload among computing nodes at the edge and cloud levels, meeting the ambitious
goals of DEDICAT 6G requires systematic research, development and experimentation on
these techniques.

The network should ultimately provide sufficient computational capacity to serve the needs
of the users. By summing up the potentially simultaneous need for computing power of a high
number of individual users, it is clear that techniques of parallel and distributed computing
need to be widely applied to be able to serve users with a sufficient quality of service. The
main idea of parallel computation is to decompose or divide the computational problem at
hand into subproblems that can be solved in parallel and to compose the solution of the
original problem from the results of the subproblems. This may naturally happen hierarchi-
cally, recursively and/or in consecutive parts. Solving the subproblems in parallel introduces
the need for communication between the parallel parts, which in turn may create depend-
encies that require synchronization between them. Finally, to get actual results, these parallel
parts need to be executed in physical processors which raises a need to define the relation-
ship of execution units and parts executed in parallel, known as mapping. A related concept,

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 49

partitioning, refers to the way how data are placed with respect to the execution units. Dis-
tributed computation is similar to parallel computation but now subproblems are executed
in physically distributed machines. This introduces substantially higher latencies, lower band-
width and heterogeneity of HW and SW affecting the performance and productivity of soft-
ware development. As a result, the methodology of distributed computation is somewhat
different than that for parallel computation.

The main methods to increase the performance of the networked systems, such as DEDICAT
6G, is the increase the computing and communication resources of the system and apply
aforementioned parallel and distributed computing and communication to decrease the
latencies, optimize the architecture of the system to better utilize the existing resource, im-
prove the efficiency of the components, e.g., processors, memories, I/O systems, communi-
cation links and switches, improve the algorithms supporting execution of applications and
finally, optimizing the user applications. The main approach for the work associated to this
section is to optimize the architecture via selected architectural techniques.

In the following subsections, architectural techniques for context switching, patterns of com-
putation and communication, load balancing, movement of threads, reducing the state of
computation, synchronization, programmability and placement of functionality are consid-
ered with the first results. The goal is to support optimization of the DEDICAT 6G system, i.e.,
placement of intelligence, with respect to DEDICAT 6G Key Performance Indicators. Evaluat-
ing the possibilities and advantages of selected architectural techniques at processor, server,
cloudlet and region levels is planned as a part of DEDICAT 6G studies.

5.1 Hierarchical architectures for distributed computing

Before entering into architectural techniques, let us first take another short look at the archi-
tectures for distributed computing.

Figure 12: Architectural techniques for distributed computing at different levels

The main enabler for the intelligent distributed computing is ability to dynamically decide
where the computing should take place for each user requesting service from the network,
as described in the previous subsections. The desired features of good placement include

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 50

avoiding computational and communication imbalances of servers and access points from
both overuse and underuse of resources. Underuse of resources, e.g., bandwidth, CPU time,
of the network should be avoided in some cases including heavy network congestion or
when maximizing the use of locally harvested energy. In addition, underuse can sometimes
be seen an indication of wasting resources and therefore causing extra cost. Prior to this
online computing placement decision, however, one has to make a number of architectural
choices that then introduce constraints for the overall decision-making process for the com-
puting placement on the physical server architecture and embedded processing units. We
denote these methodologies as architectural techniques.

A number of hierarchical levels can be identified on which different architectural techniques
can take place, cf. [22], [24], [25], [26], [27], [28], [29], [21], and [23]. Here we coarsely divide
the techniques into network-level and processing-level architectural techniques, see Figure
12.

Regarding the network level of architectural techniques, the main objectives involve physical
server deployment geographically, logical architecture with integration structures of servers
into core network, and remote server cooperation.

The physical server architecture from a network deployment perspective is typically a hierar-
chical system where servers with different capabilities are placed in data centers, cloudlets
(server clusters), and as single edge servers. The server deployment problem is typically more
involved than traditional base station deployment problem. The number, type, cost, and lo-
cation of servers in region of interest form a complicated architectural design problem in-
volving several practical constraints. In general, edge servers can be co-located with gate-
ways and access points or embedded in radio devices. The more hierarchical levels, the
better is the scalability and responsiveness of the services. However, these benefits typically
come with higher complexity and cost. The logical architecture then deals with the sup-
ported functionality on the top of the physical architecture. The main issues in the logical
architecture include enabling physical/virtual resource orchestration via decision making
and hiding the unnecessary system features via sophisticated abstraction methods. The num-
ber of hierarchical physical and logical layers may vary with different trade-offs (cf. [21]).

The integration of servers into the network is a critical enabler of geographically distributed
computing. In essence, the network standards should seamlessly support the access to dis-
tributed servers. The logical network architecture can be divided into control and data
planes where the control plane is in charge of distributing control strategy in centralized
and/or decentralized manner. A number of different concepts have been proposed to inte-
grate computing capabilities into wireless network (cf. [24]). The maximum distance between
the parts of the distributed computing depends on the target use case. For latency critical
applications, it is naturally expected to be more limited. The proposed frameworks differen-
tiate according to the selected control centralization degree, controller position (e.g. base
station), and server location (small cell, base station, gateway).

The server cooperation is an important characteristic of a sophisticated network-level archi-
tecture. The overall architecture should efficiently support the load balancing and dynamic
service migration, as users move across different locations in the network, including the
runtime application state for service continuity. In other words, the purpose of cooperation is
to avoid both resource underutilization and overutilization while ensuring sufficient service
quality. The competitive architecture must therefore support the message exchange to-
wards such cooperation possibly deployed by multiple vendors.

Regarding the processing level, the main objectives include the definition of server pro-
cessing architecture, computation virtualization structure, and computation parallelization
structures.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 51

The edge server typically involves a hosting platform for the hardware components and an
application platform for virtualization activities. The processing hardware architecture of
smaller edge servers is typically based on multicore CPU using X86/ARM architectures based
on CISC/RISC approaches. Emerging specialized computing accelerations include graph-
ical processing units (GPUs) and tensor processing units (TPUs) for graphical processing and
machine learning, respectively. A modular edge server architecture then effectively com-
bines different kind of core types, power distribution subsystems, cooling subsystems,
memory, management, and I/O buses. A rough comparison of different processing units can
be found from [30].

Computation virtualization refers to abstraction of above processor hardware architectures
via software architectures such as virtual machines and containers. Virtualization frees an
application to keep track on which physical processor it is running and enables easier re-
scheduling and parallelization. Edge computing orchestrators manage specific software
platforms such as virtual machines or containers and related resources. E.g. FocusStack ex-
tends common OpenStack approach and coordinates edge resources for mobile nodes in-
cluding cars and drones with location awareness. The container architectures can typically
use resources more efficiently than virtual machines. Some examples include for edge sce-
narios KubeEdge, EdgeBench, DeFog, and Edgedroid and their benchmarking performance
can be found from [23].

Computation parallelization refers to utilization of multiple and possibly heterogeneous pro-
cessing unit architectures. Different processor unit architectures are dominated by the num-
ber of cores, clock frequencies, and cache memory sizes. A typical heterogeneous collabo-
rative architecture involves GPUs and CPUs that can handle both throughput-critical and
latency-critical applications for general purpose computation. The convergence properties
of computation cores and storage elements are of high interest to use the resources effi-
ciently. The expected performance gains from parallelization are strongly application de-
pendent as the application task needs to be easily parallelized within one physical server.
The multiprocessor architectures need specific attention to task scheduling, synchronization,
load balancing.

In the following subsections, we look at some of these aspects in more detail.

5.2 Techniques

Practical improvements in placement of intelligence can be obtained by applying architec-
tural techniques for improving the behaviour of the system with respect to KPIs in context
switching, patterns of computation and communication, load balancing, movement of
threads, reducing the state of computation, synchronization, programmability and place-
ment of data and functionality:

Context switching—Traditional context switching in a CPU relies on interrupting execution of
the current thread, waiting until all the operations under execution are completed, saving its
registers to the thread table—a data structure keeping the state of the threads while they
are not in execution—selecting a new thread for execution, loading the appropriate registers
from the thread table and restarting the execution. If the context switching involves chang-
ing of the process too, writing to/reading from the process table, flushing resources keeping
critical data and setting up memory spaces and privileges are needed.

While all CPUs capable of executing multitasking operating systems support switching of
threads, the latency of thread switching is typically a few hundred clock cycles. This is not a
problem when executing independent threads. However, if the threads of the functionality
at hands require dense intercommunication, the performance can be catastrophically poor
as will be illustrated by our experimental results in the next subsection.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 52

The main mechanisms for accelerating context switching include multithreading and thick
control flow (TCF) execution:

• Multithreading is an architectural technique that speeds up thread switching with a help of
dedicated hardware and an on-chip thread storage. As long as the target thread is located
in the on-chip thread storage, the thread switching time can be modest or even fully elimi-
nated in certain CPU architectures.

• TCF execution is an abstraction of parallel computation that merges self-similar threads into
a single computational entity that is independent of the number of threads. Self-similarity
refers here to properties of flowing through the same control path and having homogeneous
operations. We call the component threads of a TCF as fibers to distinguish them from ordi-
nary threads having their own control. The fibers within a TCF are executed synchronously
with respect to each other in order to simplify parallel programming.

Patterns of computation and communication—Patterns of parallel and distributed computa-
tion and communication refer to situations where multiple computational threads interact in
a regular way that can be seen as a pattern. The most popular patterns include parallel
execution, reduction and spreading and permutation. These are used, e.g., in parallel pro-
cessing and communication, collection of data, multicasting as well as in certain mapping
tasks (see Figure 13).

Figure 13: Patterns of computation and communication

There exist a few techniques to speed up these patterns:

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 53

• Multioperations are primitives of parallel computation by which threads perform reductions,
e.g., additions, on values provided by multiple threads into a single value in a constant num-
ber of steps.

• Broadcasting/multicasting are primitives of communication by which a node sends a mes-
sage/stream/transmission to multiple target nodes to reduce the load of the network.

• Flexible mapping is a technique to change the mapping of computational threads onto
processing units. In certain situations, this can be used to implement permutation-style place-
ment of data for free.

From the theoretical point of view, efficient hardware support of patterns can speed up ex-
ecution by a logarithmic factor with respect to the baseline execution with a software solu-
tion. In our preliminary tests we have indication of this behaviour as we achieved the
speedup with respect to a baseline system without these techniques.

Load balancing—Load imbalance is one of the most important reasons for poor utilization of
the computational hardware. In the worst case, the execution time of a set of tasks in an S
server region would be S times slower than perfectly balanced execution where all servers
run with the full utilization.

The main means for load balancing include:

• Work sharing is a technique in which a computing node, e.g., an edge server, shares its
workload with neighbouring edge servers or the servers within its edge server region to
shorten the overall execution time or to reduce the load of the server. This may be applied
to independent tasks or tasks with some dependencies.

• Work stealing is a technique in which a computing node, e.g., an edge server, looks at the
queues of the neighbouring edge servers or servers within the same edge server region and
"steals" their work items to reduce contention.

• Moving threads is an architectural technique in which threads are moved to a node where
the data they are going to use is located rather than data is moved to threads making use
of them. While this requires only one movement per thread whereas reading data from
memory requires two movements per operation, the thread typically contains much more
data than a memory reference.

Movement of threads—An essential part of computation offloading, functionality migration
and load balancing is the movement of actual computational threads and processes. These
include the state of the computation in processor (context) and memory area containing
data and executable as well as needed libraries. The baseline technique is to move every-
thing in the computational node to another. The overall latency associated to movement of
a thread, set of threads or a process includes the amount of data that needs to be trans-
ported, time to move the functionality from one computer to another, downtime needed
before a program can be restarted in the target node. These are highly dependent on the
part of the network (nodes, routers/switches and communication links) involved in compu-
ting and transferring the functionality.

More advanced techniques for movement of threads include:

• Containers are a technique for moving functionality from a computer to another. A con-
tainer consists of a runtime environment: an application, all its dependencies, libraries and
other binaries, and configuration files needed to run it, bundled into one package.

• Moving threads is an architectural technique in which threads are moved to a node where
the data they are going to use is located rather than data is moved to threads making use
of them. While this requires only one movement per thread whereas reading data from

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 54

memory requires two movements per operation, the thread typically contains much more
data than a memory reference.

Reducing the state of computation—The state of computation at processor level is directly
proportional to the latency of moving/migrating computation in the network. The smaller the
state is the faster the movement gets.

The most popular model of Flynn’s Taxonomy of parallel execution is the Multiple Instruction
Multiple Data (MIMD) model. In this model, multiple threads are executed in multiple proces-
sor cores in parallel. The main problems of the MIMD execution are that the state of compu-
tation is fully replicated for each thread of execution and that providing a (unique) program
for each thread can be tedious if the number of threads is high. There exist, however, alter-
natives to the MIMD model, but they also come with limitations. The most interesting ones
include Single Instruction Multiple Data (SIMD) and Thick Control Flow (TCF) execution:

• SIMD execution is an architectural technique in which parallel data is processed in the
control of single instruction. This can potentially reduce the state of computation since there
are only single instruction active at the time. The cost of SIMD execution is, however, that
control parallel patterns must be executed sequentially. This becomes a problem with func-
tionalities containing control parallelism. In addition, functionalities featuring heterogeneity
need to be executed partially one after another.

• TCF execution is an abstraction of parallel computation that merges self-similar threads into
a single computational entity that is independent of the number of threads. Self-similarity
refers here to properties of flowing through the same control path and having homogeneous
operations. We call the component threads of a TCF fibers to distinguish them from ordinary
threads having their own control. The fibers within a TCF are executed synchronously with
respect to each other in order to simplify parallel programming.

Synchronization—Synchronization is the key mechanism to ensure the correct behaviour of
parallel and distributed software at hands in the case of inter-thread dependencies. Unfor-
tunately, in current multicore systems the cost of synchronization can be very high. The main
reason for this is the asynchronous nature of execution in multicore CPUs, computers with
multiple processor sockets, clusters of computers and especially in the network. A notable
fact is that the need for fast and efficient synchronizations is much more stringent in fine-
grained parallel computing than in coarse-grained distributed computing that is not sup-
posed to be able to execute fine-grained parallel algorithms efficiently.

The low-level mechanisms to support synchronization include:

• Barrier synchronization is a technique to prevent any thread from proceeding beyond a
certain point of the program as long as not all threads have reached this point. After all the
threads have reached the barrier, the threads are released for execution.

• Wave synchronization is a technique in which special synchronization messages are sent
by the processors to the memory modules and vice versa. The idea is that when a processor
has sent all its messages belonging to a single step on their way, it sends a synchronization
message. Synchronization messages from various sources push on the actual messages, and
spread to all possible paths, where the actual messages could go. When a switch receives a
synchronization message from one of its inputs, it waits, until it has received a synchronization
message from all inputs, then it forwards the synchronization wave to all outputs. The synchro-
nization wave may not bypass any actual messages and vice versa. When a synchronization
wave sweeps over a network, all switches, modules and processors receive exactly one syn-
chronization message via each input link and send exactly one via each output link.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 55

Programmability—A processor can be said to have good programmability if the functionali-
ties can be expressed compactly and naturally without unnecessary architecture-depend-
ent constructs. An important factor of programmability is also portability and ability to retain
speedup with respect to the number of execution units among a group of processors using
the same paradigm/approach but having different hardware implementation parameters.
The main challenges of current systems include the asynchronous nature of execution and
sensitivity to non-trivial memory access patterns. Distributed systems, such as regions of edge
servers, pose additional challenges to programmability since the latencies are much higher,
throughputs much lower than those in clusters or parallel machines. Programmability is im-
portant performance indicator since it is directly proportional to productivity of software de-
velopment, and thus cost of the software.

A known method to address this challenge is to use Emulated Shared Memory (ESM) archi-
tecture.

• ESM architecture can be used to implement synchronous machines that are not sensitive
to used computational patterns. These will make programming substantially simpler than that
in current multicore processors and distributed systems.

Placement of data and functionality— The best performance is achieved when the right data
is in the right place at the right time since moving both data and computation, i.e., execution
of operations take time. Additional complications come from the fact that the farther away
data is from the place where it is needed, the longer time it takes to obtain it and the more
dependencies there are, the longer it takes to execute if there are resource limitations. Ad-
ditional complications can come from possible contention of traffic in the network caused
by non-optimal placement of data and functionality in the network, reliability issues poten-
tially requiring resubmissions, protocol issues, deadlocks, livelocks, race conditions, sequen-
tialization, physical defects, noise etc.

Current multicore systems are highly sensitive to data and functionality placement. These
phenomena are augmented in the distributed computers such as cloudlets and regions of
edge servers due to high latencies and limited bandwidth. The main software techniques to
reduce the performance penalties are matching the software parallelism with the hardware
one and the blocking technique:

• Matching parallelism is a programming technique in which the number of active threads
Tsw is limited to the number of hardware threads Thw and cases with more parallelism than Thw
are handled by processing at most Thw data element at the time with Thw threads and repeat-
ing this until all the data elements have been processed. The challenges of this technique
include the loop overhead, need for temporary variables in the case of self-modifying da-
taset and increased number of code lines.

• Blocking is a programming technique in which the functionality is divided into blocks that
are executed in parallel. Since the current multicore CPUs and more distributed machines
suffer from weak performance in the case of functionalities containing frequent exchange
of data and/or non-trivial computational patterns. The challenges of this technique include
the loop overhead, existence of suitable locality maximization technique, need for tempo-
rary variables in the case of self-modifying dataset and increased number of code lines.

5.3 Experimental results

In order to evaluate the goodness of the techniques listed in the previous subsection, we
have made a number of early experimentations at processor/server level.

Context switching—We measured the execution time of the blocked version of the mem-
copy kernel program as a function of the number of threads in systems featuring 4-core Intel

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 56

Core i7 and 18-core Xeon W processors. Both processors feature two way-multithreading (or
hyperthreading as Intel calls it) where a processor core can execute up to two threads with-
out typical 100+ clock cycle thread switching overhead.

According to our measurements, the execution time decreases almost linearly with respect
to the number of threads as far as the number of threads does not exceed the number of
processor cores (see Figure 14).

The measurements confirm that as far as the number of threads does not exceed the number
of hardware threads, the performance stays roughly the same as with only one thread per
core. However, as the number of threads exceeds the number of hardware threads, the
execution time explodes by two to three orders of magnitude and keeps growing when the
number of threads is further increased. The main reason for this is the interference of ineffi-
cient thread switching and synchronization amplified by operating system scheduler that tries
to minimize the cost of thread switches by allocating long time slices for them.

Figure 14: Execution time of blocked version of the memcopy benchmark (log scale)

Patterns of computation and communication—We measured the execution time of memory-
to-memory reduction patterns in a machine supporting five variants of multioperations and
compared the results to sequential algorithm without any of these operations. The variants
include a fast single-instruction multioperation (FS), a symmetric two-instruction multiopera-
tion (S2), a backend-frontend multioperation (BF), an optimized two-instruction multiopera-
tion (O2) and a multioperation load (ML).

According to our measurements, the multioperation techniques can speed up execution of
memory to memory reductions by a factor of 15.57 w.r.t. sequential execution and by a fac-
tor of 43.82 w.r.t. 16-processing unit baseline machine (see Figure 15).

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 57

Figure 15: Relative performance of a multioperation reduction as a funct. of the input data array size

Programmability—In order to measure the complexity of programming, we implemented
three versions of matrix addition algorithm A:=A+B for a typical Intel multicore CPU system
with C/pthreads and a single version for a system utilizing shared memory emulation (ESM)
with a C/pthreads-style parallel language. From the programs, we determined the number
of active code lines. Three program versions for the Intel system were included since the sim-
plest straight-forward pthreads version interferes in a very ugly way with the operating system
scheduler and gives millions of times slower execution time than the 16-core ESM machine
even if 18-core Xeon W system is used. The matched parallel pthreads version is also perfor-
mance limited giving almost 100 times slower performance than ESM. Finally, the blocked
version is almost able to match the performance of ESM, with its 44% (62% per processor core)
slower execution speed.

Figure 16 shows implementations of as active code lines. Note that the number of active
code lines for pthreads algorithms increases as the execution time decreases and that the
ESM version is 2, 3 and 6 times shorter, respectively.

Figure 16: Parallel matrix addition algorithm for Intel CPUs and an ESM machine

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 58

Placement of functionality—We measured the execution time of the matched parallelism
and blocked versions of the memcopy program as a function of the number of threads in
systems with 4-core Intel Core i7 and 18-core Xeon W processors. Both processors feature two
way-multithreading (or hyperthreading as Intel calls it) where a processor core can execute
up to two threads without typical 100+ clock cycle thread switching overhead.

Figure 17: Execution time of matched parallel and blocked versions of the memcopy benchmark
(log scale)

Figure 17 shows the results of the measurements. The matched parallel version of the bench-
mark utilizes interleaved access pattern whereas the blocked version relies on blocked ac-
cess. The effect of switching from blocked to matched parallel version is dramatic in both
processors: There is hardly any speedup as the number of threads is increased and the overall
performance is much weaker.

0,00001

0,0001

0,001

0,01

0,1

1

10

1 2 4 8 16 32 64 128 256 512 1024

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

Number of threads

Matched Core i7

Blocked Core i7

Matched Xeon W

Blocked Xeon W

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 59

6 Conclusions
The DEDICAT 6G project has defined a set of global objectives, among which:

 To provide imperceptible end-to-end latency and response time, with a minimal en-
ergy and resource consumption in B5G networks for the support of innovative appli-
cations

 Reinforce security, privacy and trust in B5G systems in support of advanced IoT appli-
cations

 Develop human-centric applications and showcase novel interaction between hu-
mans and digital systems

These three objectives are at the core of the work performed in WP3. In order to achieve
these objectives, the work in WP3 is divided into three tasks: task T3.1 deals with the architec-
tural techniques for supporting distribution of intelligence, task T3.2 deals with the algorithms
and optimization of intelligence placement, and task T3.3 is about building a prototype.

This document has presented the elements in the DEDICAT 6G architecture that are relevant
to WP3, namely the Context-Awareness, Analytics, Service Orchestration and Decision-Mak-
ing Functional Groups. It has also given a short overview of the State-of-Art about the distri-
bution of intelligence and an overview of the most mature technologies. Finally, it has de-
scribed the preliminary work achieved in tasks 3.1 and 3.2.

In the next work period, the algorithms described in Section 4 will be refined and imple-
mented in a Proof-of-Concept prototype. In addition, the work on architectural techniques
described in section 5 will be continued, expanded to machine, cloudlet and edge region
levels, and implemented in a prototype. These prototypes will then later on be integrated in
the pilots defined in WP6.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 60

References

[1] Kamal MA, Raza HW, Alam MM, Su’ud MM, Sajak AbAB. “Resource Allocation Schemes
for 5G Network: A Systematic Review”. Sensors. 2021; 21(19):6588.
https://doi.org/10.3390/s21196588.

[2] B. Dudin, N. A. Ali, A. Radwan and A. -E. M. Taha, "Resource Allocation with Automated
QoE Assessment in 5G/B5G Wireless Systems," in IEEE Network, vol. 33, no. 4, pp. 76-81,
July/August 2019, doi: 10.1109/MNET.2019.1800463.

[3] K. Lin, Y. Li, Q. Zhang and G. Fortino, "AI-Driven Collaborative Resource Allocation for Task
Execution in 6G-Enabled Massive IoT," in IEEE Internet of Things Journal, vol. 8, no. 7, pp.
5264-5273, 1 April1, 2021, doi: 10.1109/JIOT.2021.3051031.

[4] S. Abidrabbu, H. Arslan, Energy-efficient resource allocation for 5G cognitive radio
NOMA using game theory, 2021, arXiv preprint arXiv: 2101.00225.

[5] Nasim Kazemifard, Vahid Shah-Mansouri, Minimum delay function placement and re-
source allocation for Open RAN (O-RAN) 5G networks, Computer Networks, Volume 188,
2021, 107809, ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2021.107809.

[6] A. Mukherjee and A. Hottinen, “Energy-efficient device-to-device MIMO underlay net-
work with interference constraints,” in Proc. IEEE WSA’12, Dresden, Germany, Mar. 2012,
pp. 105–109.

[7] S. Wen, X. Zhu, Z. Lin, X. Zhang, and D. Yang, “Energy efficient power allocation schemes
for device-to-device (D2D) communication,” in Proc. IEEE VTC Fall’13, Las Vegas, USA,
Sep. 2013, pp. 1–5.

[8] S. YAMASHITA, H. SUGANUMA, T. MURAKAMI, Y. TAKATORI and F. MAEHARA, "Centralized
Resource Allocation Method for Multiuser MIMO Capable Wireless LANs," 2019 22nd In-
ternational Symposium on Wireless Personal Multimedia Communications (WPMC), 2019,
pp. 1-5, doi: 10.1109/WPMC48795.2019.9096141.

[9] H. Beshley, M. Beshley, T. Maksymyuk and I. Strykhalyuk, "Method of centralized resource
allocation in virtualized small cells network with IoT overlay," 2018 14th International Con-
ference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer
Engineering (TCSET), 2018, pp. 1147-1151, doi: 10.1109/TCSET.2018.8336397.

[10] D. Wu, J. Wang, R. Q. Hu, Y. Cai et al., “Energy-efficient resource sharing for mobile
device-to-device multimedia communications,” IEEE Trans. Veh. Tech., vol. 63, no. 5, pp.
2093–2103, Mar. 2014.

[11] A. Huang, Y. Li, Y. Xiao, X. Ge, S. Sun and H. Chao, "Distributed Resource Allocation for
Network Slicing of Bandwidth and Computational Resource," ICC 2020 - 2020 IEEE Inter-
national Conference on Communications (ICC), 2020, pp. 1-6, doi:
10.1109/ICC40277.2020.9149296.

[12] H. Dun, F. Ye, S. Jiao, Y. Li and T. Jiang, "The Distributed Resource Allocation for D2D
Communication with Game Theory," 2019 IEEE-APS Topical Conference on Antennas
and Propagation in Wireless Communications (APWC), 2019, pp. 104-108, doi:
10.1109/APWC.2019.8870437.

[13] DEDICAT 6G Deliverable D2.2 “Initial System Architecture”.
[14] M. Lauridsen et al., “From LTE to 5G for connected mobility,” IEEE Communication

Magazine, 2017.
[15] E. Björnson et al., “How energy-efficient can a wireless communication system be-

come ?” in Proc. 52nd Asilomar Conference on Sig. Sys, and Comp., 2018.
[16] ETSI, “Mission Critical Push to Talk (MCPTT)”, Stage 1 (3GPP TS 22.179 version 16.5.0 Re-

lease 16)
[17] ITU, “Minimum requirements related to technical performance for IMT-2020 radio inter-

face(s)”, report M.2410-0 (11/2017).
[18] DEDICAT 6G Deliverable D4.1, “First release of mechanisms for dynamic coverage and

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 61

connectivity extension”
[19] ETSI, “Network Functions Virtualisation (NFV) Release 3; Protocols and Data Models;

RESTful protocols specification for the Os-Ma-nfvo Reference Point”, 09/2020.
[20] ETSI, “Network Functions Virtualisation (NFV) Release 3; Protocols and Data Models;

NFV descriptors based on YANG Specification”, 08/2020.
[21] C. Li et al., “Edge-oriented computing paradigms: a survey on architecture design

and system management,” 2017.
[22] Y. Mao et al., “A survey on mobile edge computing: The communication perspec-

tive,” 2017.
[23] B. Varghese et al., “A survey on edge performance benchmarking,” ACM Computing

Surveys, 2021.
[24] P. Mach et al., “Mobile edge computing: A survey on architecture and computation

offloading,” IEEE Commun. Surveys & Tut., 2017.
[25] H. Liu et al., “Mobile edge cloud system: Architectures, challenges, and approaches,”

IEEE Systems Journal, 2018.
[26] P. Habibi et al., “Fog computing: A comprehensive architectural survey,” IEEE Access,

2020.
[27] M Habibi et al., “A comprehensive survey of RAN architectures toward 5G mobile

communication system,” IEEE Access, 2019.
[28] G. Blake et al., “A survey of multicore processors,” IEEE Signal Processing Magazine,

2009.
[29] S. Mittal et al., “A survey of CPU-GPU heterogeneous computing techniques,” ACM

Computing Surveys, 2015.
[30] C. Byers, “Heterogeneous computing in the Edge, ” IIC Journal of Innovation, 2021.
[31] Radulescu, R. e. (2020). “Multi-objective multi-agent decision making: a utility-based

analysis and survey. Autonomous Agents and Multi-Agent Systems”, (pp. 1-52).
[32] Abels, A. e. (2019). “Dynamic weights in multi-objective deep reinforcement learning.

International conference on machine learning”.
[33] 5G-Ensure. (2017). Deliverable D3.6 5G-PPP security enablers open specification.
[34] 5GPP. (2017). White Paper Phase 1 Security Landscape.
[35] Ahilan, S. e. (2019). Feudal multi-agent hierarchies for cooperative reinforcement

learning. ICLR.
[36] B. Sas, K. S. (2014). Classifying Users based on their Mobility Behavior in LTE networks.

10th Int. Conf. on Wireless and Mob. Comms. (ICWMC).
[37] Chu, T. e. (2019). Multi-agent deep reinforcement learning for large-scale traffic signal

control. IEEE Transactions on Intelligent Transportation Systems.
[38] Cisco. (2014). Quality of Service Design Overview. Dans Cisco Press book End-to-End

QoS Network Design: Quality of Service for Rich-Media & Cloud Networks, 2nd Edition .
[39] Deb, K. e. (37750). A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.
[40] Hsu, M. L.-J. (2013). Mining GPS data for mobility patterns: A survey. Pervasive and Mo-

bile Computing.
[41] Marjalaakso, M. (s.d.). Security Requirements and Constraints of VoIP. Helsinki Univer-

sity of Technology.
[42] METIS. (s.d.). FP7-ICT-317669-METIS/D1.1 .
[43] NGMN. (s.d.). 5G White Paper.
[44] Qualcomm. (2016). Making Immersive Virtual Reality Possible in Mobile.
[45] Qualcomm Technologies, I. (2017). VR and AR pushing connectivity limits.
[46] S. Rangan, T. S. (2014). Millimeter-Wave Cellular Wireless Networks: Potentials and Chal-

lenges. IEEE, 102(3), 366-385.
[47] Smith, R. (1980). The Contract Net Protocol: High level communication and control in

a distributed environment. IEEE Transactions on computers.

D3.1 First Release of Mechanisms for Dynamic Distribution of Intelligence

 DEDICAT 6G - ICT-52-2020 – G.A:101016499 62

[48] Troch, A. e. (2021). Transfer Learning in Automomous Driving using Real-World Samples.
Advances in P2P, Parallel, Grid, Cloud and Internet Computing.

[49] Zimmer, M. e. (2021). Learning Fair POlicies in Decentralized Cooperative Multi-Agent
Reinforcement Learning. Proceedings of the 38th international conference on machine
learning.

